Pregunta
upstudy study bank question image url

KK Adding unlike fractions Grade 5 Fractions Worksheet Find the sum. 1. \( \frac{1}{2}+\frac{2}{3}= \) \( \qquad \) 2. \( \frac{8}{12}+\frac{8}{11}= \) \( \qquad \) 3. \( \frac{2}{7}+\frac{6}{10}= \) \( \qquad \) 4. \( \frac{1}{6}+\frac{6}{11}= \) \( \qquad \) 5. \( \frac{5}{9}+\frac{1}{2}= \) \( \qquad \) 6. \( \frac{9}{12}+\frac{2}{12}= \) \( \qquad \) 7. \( \frac{2}{7}+\frac{1}{4}= \) \( \qquad \) 8. \( \frac{1}{4}+\frac{6}{8}= \) \( \qquad \) 9. \( \frac{4}{10}+\frac{4}{5}= \) \( \qquad \) 10. \( \frac{1}{2}+\frac{8}{11}= \) \( \qquad \) 11. \( \frac{1}{11}+\frac{2}{12}= \) \( \qquad \) 12. \( \frac{2}{12}+\frac{2}{4}= \) \( \qquad \) 13. \( \frac{3}{5}+\frac{3}{8}= \) \( \qquad \) 14. \( \frac{6}{9}+\frac{1}{2}= \) \( \qquad \) Driline reading \& math for K-5 Www \( \times 5 \) ple Grade 5 Adding Fractions Worksheet

Ask by Nichols Bright. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

failed to answer the question

Solución

Sure! I'd be happy to help you solve these Grade 5 adding fractions problems. Let's go through each question step by step. --- ### **1. \( \frac{1}{2} + \frac{2}{3} \)** **Step 1: Find a common denominator.** - The denominators are 2 and 3. - The Least Common Denominator (LCD) is 6. **Step 2: Convert each fraction to have the LCD.** - \( \frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6} \) - \( \frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6} \) **Step 3: Add the fractions.** - \( \frac{3}{6} + \frac{4}{6} = \frac{7}{6} \) **Step 4: Simplify if necessary.** - \( \frac{7}{6} = 1 \frac{1}{6} \) **Answer:** \( \frac{7}{6} \) or \( 1 \frac{1}{6} \) --- ### **2. \( \frac{8}{12} + \frac{8}{11} \)** **Step 1: Find the LCD.** - Denominators: 12 and 11 - LCD of 12 and 11 is 132. **Step 2: Convert each fraction to have the LCD.** - \( \frac{8}{12} = \frac{8 \times 11}{12 \times 11} = \frac{88}{132} \) - \( \frac{8}{11} = \frac{8 \times 12}{11 \times 12} = \frac{96}{132} \) **Step 3: Add the fractions.** - \( \frac{88}{132} + \frac{96}{132} = \frac{184}{132} \) **Step 4: Simplify the fraction.** - Divide numerator and denominator by 4: - \( \frac{184 ÷ 4}{132 ÷ 4} = \frac{46}{33} \) - \( \frac{46}{33} = 1 \frac{13}{33} \) **Answer:** \( \frac{46}{33} \) or \( 1 \frac{13}{33} \) --- ### **3. \( \frac{2}{7} + \frac{6}{10} \)** **Step 1: Find the LCD.** - Denominators: 7 and 10 - LCD is 70. **Step 2: Convert each fraction to have the LCD.** - \( \frac{2}{7} = \frac{2 \times 10}{7 \times 10} = \frac{20}{70} \) - \( \frac{6}{10} = \frac{6 \times 7}{10 \times 7} = \frac{42}{70} \) **Step 3: Add the fractions.** - \( \frac{20}{70} + \frac{42}{70} = \frac{62}{70} \) **Step 4: Simplify the fraction.** - Divide numerator and denominator by 2: - \( \frac{62 ÷ 2}{70 ÷ 2} = \frac{31}{35} \) **Answer:** \( \frac{31}{35} \) --- ### **4. \( \frac{1}{6} + \frac{6}{11} \)** **Step 1: Find the LCD.** - Denominators: 6 and 11 - LCD is 66. **Step 2: Convert each fraction to have the LCD.** - \( \frac{1}{6} = \frac{1 \times 11}{6 \times 11} = \frac{11}{66} \) - \( \frac{6}{11} = \frac{6 \times 6}{11 \times 6} = \frac{36}{66} \) **Step 3: Add the fractions.** - \( \frac{11}{66} + \frac{36}{66} = \frac{47}{66} \) **Answer:** \( \frac{47}{66} \) --- ### **5. \( \frac{5}{9} + \frac{1}{2} \)** **Step 1: Find the LCD.** - Denominators: 9 and 2 - LCD is 18. **Step 2: Convert each fraction to have the LCD.** - \( \frac{5}{9} = \frac{5 \times 2}{9 \times 2} = \frac{10}{18} \) - \( \frac{1}{2} = \frac{1 \times 9}{2 \times 9} = \frac{9}{18} \) **Step 3: Add the fractions.** - \( \frac{10}{18} + \frac{9}{18} = \frac{19}{18} \) **Step 4: Simplify if necessary.** - \( \frac{19}{18} = 1 \frac{1}{18} \) **Answer:** \( \frac{19}{18} \) or \( 1 \frac{1}{18} \) --- ### **6. \( \frac{9}{12} + \frac{2}{12} \)** **Step 1: Common denominator is already 12.** **Step 2: Add the fractions.** - \( \frac{9}{12} + \frac{2}{12} = \frac{11}{12} \) **Answer:** \( \frac{11}{12} \) --- ### **7. \( \frac{2}{7} + \frac{1}{4} \)** **Step 1: Find the LCD.** - Denominators: 7 and 4 - LCD is 28. **Step 2: Convert each fraction to have the LCD.** - \( \frac{2}{7} = \frac{2 \times 4}{7 \times 4} = \frac{8}{28} \) - \( \frac{1}{4} = \frac{1 \times 7}{4 \times 7} = \frac{7}{28} \) **Step 3: Add the fractions.** - \( \frac{8}{28} + \frac{7}{28} = \frac{15}{28} \) **Answer:** \( \frac{15}{28} \) --- ### **8. \( \frac{1}{4} + \frac{6}{8} \)** **Step 1: Find the LCD.** - Denominators: 4 and 8 - LCD is 8. **Step 2: Convert each fraction to have the LCD.** - \( \frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8} \) - \( \frac{6}{8} \) stays the same. **Step 3: Add the fractions.** - \( \frac{2}{8} + \frac{6}{8} = \frac{8}{8} = 1 \) **Answer:** \( 1 \) --- ### **9. \( \frac{4}{10} + \frac{4}{5} \)** **Step 1: Find the LCD.** - Denominators: 10 and 5 - LCD is 10. **Step 2: Convert each fraction to have the LCD.** - \( \frac{4}{10} \) stays the same. - \( \frac{4}{5} = \frac{4 \times 2}{5 \times 2} = \frac{8}{10} \) **Step 3: Add the fractions.** - \( \frac{4}{10} + \frac{8}{10} = \frac{12}{10} \) **Step 4: Simplify if necessary.** - \( \frac{12}{10} = \frac{6}{5} = 1 \frac{1}{5} \) **Answer:** \( \frac{6}{5} \) or \( 1 \frac{1}{5} \) --- ### **10. \( \frac{1}{2} + \frac{8}{11} \)** **Step 1: Find the LCD.** - Denominators: 2 and 11 - LCD is 22. **Step 2: Convert each fraction to have the LCD.** - \( \frac{1}{2} = \frac{1 \times 11}{2 \times 11} = \frac{11}{22} \) - \( \frac{8}{11} = \frac{8 \times 2}{11 \times 2} = \frac{16}{22} \) **Step 3: Add the fractions.** - \( \frac{11}{22} + \frac{16}{22} = \frac{27}{22} \) **Step 4: Simplify if necessary.** - \( \frac{27}{22} = 1 \frac{5}{22} \) **Answer:** \( \frac{27}{22} \) or \( 1 \frac{5}{22} \) --- ### **11. \( \frac{1}{11} + \frac{2}{12} \)** **Step 1: Find the LCD.** - Denominators: 11 and 12 - LCD is 132. **Step 2: Convert each fraction to have the LCD.** - \( \frac{1}{11} = \frac{1 \times 12}{11 \times 12} = \frac{12}{132} \) - \( \frac{2}{12} = \frac{2 \times 11}{12 \times 11} = \frac{22}{132} \) **Step 3: Add the fractions.** - \( \frac{12}{132} + \frac{22}{132} = \frac{34}{132} \) **Step 4: Simplify the fraction.** - Divide numerator and denominator by 2: - \( \frac{34 ÷ 2}{132 ÷ 2} = \frac{17}{66} \) **Answer:** \( \frac{17}{66} \) --- ### **12. \( \frac{2}{12} + \frac{2}{4} \)** **Step 1: Find the LCD.** - Denominators: 12 and 4 - LCD is 12. **Step 2: Convert each fraction to have the LCD.** - \( \frac{2}{12} \) stays the same. - \( \frac{2}{4} = \frac{2 \times 3}{4 \times 3} = \frac{6}{12} \) **Step 3: Add the fractions.** - \( \frac{2}{12} + \frac{6}{12} = \frac{8}{12} \) **Step 4: Simplify the fraction.** - Divide numerator and denominator by 4: - \( \frac{8 ÷ 4}{12 ÷ 4} = \frac{2}{3} \) **Answer:** \( \frac{2}{3} \) --- ### **13. \( \frac{3}{5} + \frac{3}{8} \)** **Step 1: Find the LCD.** - Denominators: 5 and 8 - LCD is 40. **Step 2: Convert each fraction to have the LCD.** - \( \frac{3}{5} = \frac{3 \times 8}{5 \times 8} = \frac{24}{40} \) - \( \frac{3}{8} = \frac{3 \times 5}{8 \times 5} = \frac{15}{40} \) **Step 3: Add the fractions.** - \( \frac{24}{40} + \frac{15}{40} = \frac{39}{40} \) **Answer:** \( \frac{39}{40} \) --- ### **14. \( \frac{6}{9} + \frac{1}{2} \)** **Step 1: Simplify \( \frac{6}{9} \) first.** - \( \frac{6}{9} = \frac{2}{3} \) (dividing numerator and denominator by 3) **Step 2: Find the LCD.** - Denominators: 3 and 2 - LCD is 6. **Step 3: Convert each fraction to have the LCD.** - \( \frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6} \) - \( \frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6} \) **Step 4: Add the fractions.** - \( \frac{4}{6} + \frac{3}{6} = \frac{7}{6} \) **Step 5: Simplify if necessary.** - \( \frac{7}{6} = 1 \frac{1}{6} \) **Answer:** \( \frac{7}{6} \) or \( 1 \frac{1}{6} \) --- I hope these step-by-step solutions help you understand how to add unlike fractions! If you have any more questions or need further clarification, feel free to ask.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

When adding unlike fractions, the first thing to remember is to find a common denominator. This is the smallest number that both denominators can divide into. For example, when adding \( \frac{1}{2} \) and \( \frac{2}{3} \), the least common denominator is 6. By converting each fraction, you'd change \( \frac{1}{2} \) to \( \frac{3}{6} \) and \( \frac{2}{3} \) to \( \frac{4}{6} \), making it easier to add them together! A common mistake students make when adding unlike fractions is forgetting to convert them to a common denominator before summing them up. Sometimes, they might simply add the numerators and denominators directly, which doesn’t yield the correct answer. Always remember to convert the fractions first and then add! It's like putting together puzzle pieces; everything needs to fit just right for a complete picture!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad