Responder
failed to answer the question
Solución
Sure! I'd be happy to help you solve these Grade 5 adding fractions problems. Let's go through each question step by step.
---
### **1. \( \frac{1}{2} + \frac{2}{3} \)**
**Step 1: Find a common denominator.**
- The denominators are 2 and 3.
- The Least Common Denominator (LCD) is 6.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6} \)
- \( \frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6} \)
**Step 3: Add the fractions.**
- \( \frac{3}{6} + \frac{4}{6} = \frac{7}{6} \)
**Step 4: Simplify if necessary.**
- \( \frac{7}{6} = 1 \frac{1}{6} \)
**Answer:** \( \frac{7}{6} \) or \( 1 \frac{1}{6} \)
---
### **2. \( \frac{8}{12} + \frac{8}{11} \)**
**Step 1: Find the LCD.**
- Denominators: 12 and 11
- LCD of 12 and 11 is 132.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{8}{12} = \frac{8 \times 11}{12 \times 11} = \frac{88}{132} \)
- \( \frac{8}{11} = \frac{8 \times 12}{11 \times 12} = \frac{96}{132} \)
**Step 3: Add the fractions.**
- \( \frac{88}{132} + \frac{96}{132} = \frac{184}{132} \)
**Step 4: Simplify the fraction.**
- Divide numerator and denominator by 4:
- \( \frac{184 ÷ 4}{132 ÷ 4} = \frac{46}{33} \)
- \( \frac{46}{33} = 1 \frac{13}{33} \)
**Answer:** \( \frac{46}{33} \) or \( 1 \frac{13}{33} \)
---
### **3. \( \frac{2}{7} + \frac{6}{10} \)**
**Step 1: Find the LCD.**
- Denominators: 7 and 10
- LCD is 70.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{2}{7} = \frac{2 \times 10}{7 \times 10} = \frac{20}{70} \)
- \( \frac{6}{10} = \frac{6 \times 7}{10 \times 7} = \frac{42}{70} \)
**Step 3: Add the fractions.**
- \( \frac{20}{70} + \frac{42}{70} = \frac{62}{70} \)
**Step 4: Simplify the fraction.**
- Divide numerator and denominator by 2:
- \( \frac{62 ÷ 2}{70 ÷ 2} = \frac{31}{35} \)
**Answer:** \( \frac{31}{35} \)
---
### **4. \( \frac{1}{6} + \frac{6}{11} \)**
**Step 1: Find the LCD.**
- Denominators: 6 and 11
- LCD is 66.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{1}{6} = \frac{1 \times 11}{6 \times 11} = \frac{11}{66} \)
- \( \frac{6}{11} = \frac{6 \times 6}{11 \times 6} = \frac{36}{66} \)
**Step 3: Add the fractions.**
- \( \frac{11}{66} + \frac{36}{66} = \frac{47}{66} \)
**Answer:** \( \frac{47}{66} \)
---
### **5. \( \frac{5}{9} + \frac{1}{2} \)**
**Step 1: Find the LCD.**
- Denominators: 9 and 2
- LCD is 18.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{5}{9} = \frac{5 \times 2}{9 \times 2} = \frac{10}{18} \)
- \( \frac{1}{2} = \frac{1 \times 9}{2 \times 9} = \frac{9}{18} \)
**Step 3: Add the fractions.**
- \( \frac{10}{18} + \frac{9}{18} = \frac{19}{18} \)
**Step 4: Simplify if necessary.**
- \( \frac{19}{18} = 1 \frac{1}{18} \)
**Answer:** \( \frac{19}{18} \) or \( 1 \frac{1}{18} \)
---
### **6. \( \frac{9}{12} + \frac{2}{12} \)**
**Step 1: Common denominator is already 12.**
**Step 2: Add the fractions.**
- \( \frac{9}{12} + \frac{2}{12} = \frac{11}{12} \)
**Answer:** \( \frac{11}{12} \)
---
### **7. \( \frac{2}{7} + \frac{1}{4} \)**
**Step 1: Find the LCD.**
- Denominators: 7 and 4
- LCD is 28.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{2}{7} = \frac{2 \times 4}{7 \times 4} = \frac{8}{28} \)
- \( \frac{1}{4} = \frac{1 \times 7}{4 \times 7} = \frac{7}{28} \)
**Step 3: Add the fractions.**
- \( \frac{8}{28} + \frac{7}{28} = \frac{15}{28} \)
**Answer:** \( \frac{15}{28} \)
---
### **8. \( \frac{1}{4} + \frac{6}{8} \)**
**Step 1: Find the LCD.**
- Denominators: 4 and 8
- LCD is 8.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{1}{4} = \frac{1 \times 2}{4 \times 2} = \frac{2}{8} \)
- \( \frac{6}{8} \) stays the same.
**Step 3: Add the fractions.**
- \( \frac{2}{8} + \frac{6}{8} = \frac{8}{8} = 1 \)
**Answer:** \( 1 \)
---
### **9. \( \frac{4}{10} + \frac{4}{5} \)**
**Step 1: Find the LCD.**
- Denominators: 10 and 5
- LCD is 10.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{4}{10} \) stays the same.
- \( \frac{4}{5} = \frac{4 \times 2}{5 \times 2} = \frac{8}{10} \)
**Step 3: Add the fractions.**
- \( \frac{4}{10} + \frac{8}{10} = \frac{12}{10} \)
**Step 4: Simplify if necessary.**
- \( \frac{12}{10} = \frac{6}{5} = 1 \frac{1}{5} \)
**Answer:** \( \frac{6}{5} \) or \( 1 \frac{1}{5} \)
---
### **10. \( \frac{1}{2} + \frac{8}{11} \)**
**Step 1: Find the LCD.**
- Denominators: 2 and 11
- LCD is 22.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{1}{2} = \frac{1 \times 11}{2 \times 11} = \frac{11}{22} \)
- \( \frac{8}{11} = \frac{8 \times 2}{11 \times 2} = \frac{16}{22} \)
**Step 3: Add the fractions.**
- \( \frac{11}{22} + \frac{16}{22} = \frac{27}{22} \)
**Step 4: Simplify if necessary.**
- \( \frac{27}{22} = 1 \frac{5}{22} \)
**Answer:** \( \frac{27}{22} \) or \( 1 \frac{5}{22} \)
---
### **11. \( \frac{1}{11} + \frac{2}{12} \)**
**Step 1: Find the LCD.**
- Denominators: 11 and 12
- LCD is 132.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{1}{11} = \frac{1 \times 12}{11 \times 12} = \frac{12}{132} \)
- \( \frac{2}{12} = \frac{2 \times 11}{12 \times 11} = \frac{22}{132} \)
**Step 3: Add the fractions.**
- \( \frac{12}{132} + \frac{22}{132} = \frac{34}{132} \)
**Step 4: Simplify the fraction.**
- Divide numerator and denominator by 2:
- \( \frac{34 ÷ 2}{132 ÷ 2} = \frac{17}{66} \)
**Answer:** \( \frac{17}{66} \)
---
### **12. \( \frac{2}{12} + \frac{2}{4} \)**
**Step 1: Find the LCD.**
- Denominators: 12 and 4
- LCD is 12.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{2}{12} \) stays the same.
- \( \frac{2}{4} = \frac{2 \times 3}{4 \times 3} = \frac{6}{12} \)
**Step 3: Add the fractions.**
- \( \frac{2}{12} + \frac{6}{12} = \frac{8}{12} \)
**Step 4: Simplify the fraction.**
- Divide numerator and denominator by 4:
- \( \frac{8 ÷ 4}{12 ÷ 4} = \frac{2}{3} \)
**Answer:** \( \frac{2}{3} \)
---
### **13. \( \frac{3}{5} + \frac{3}{8} \)**
**Step 1: Find the LCD.**
- Denominators: 5 and 8
- LCD is 40.
**Step 2: Convert each fraction to have the LCD.**
- \( \frac{3}{5} = \frac{3 \times 8}{5 \times 8} = \frac{24}{40} \)
- \( \frac{3}{8} = \frac{3 \times 5}{8 \times 5} = \frac{15}{40} \)
**Step 3: Add the fractions.**
- \( \frac{24}{40} + \frac{15}{40} = \frac{39}{40} \)
**Answer:** \( \frac{39}{40} \)
---
### **14. \( \frac{6}{9} + \frac{1}{2} \)**
**Step 1: Simplify \( \frac{6}{9} \) first.**
- \( \frac{6}{9} = \frac{2}{3} \) (dividing numerator and denominator by 3)
**Step 2: Find the LCD.**
- Denominators: 3 and 2
- LCD is 6.
**Step 3: Convert each fraction to have the LCD.**
- \( \frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6} \)
- \( \frac{1}{2} = \frac{1 \times 3}{2 \times 3} = \frac{3}{6} \)
**Step 4: Add the fractions.**
- \( \frac{4}{6} + \frac{3}{6} = \frac{7}{6} \)
**Step 5: Simplify if necessary.**
- \( \frac{7}{6} = 1 \frac{1}{6} \)
**Answer:** \( \frac{7}{6} \) or \( 1 \frac{1}{6} \)
---
I hope these step-by-step solutions help you understand how to add unlike fractions! If you have any more questions or need further clarification, feel free to ask.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución