Pregunta
28. केन्द्र \( (-1,2) \) र व्यास \( 2 \sqrt{5} \) एकाइ मएको एडटा वत्तको अनुसा बिन्दु \( \mathrm{B}(2,3) \) को उत्कम बिन्दु पत्ता लगाडनहासी 1 (Find the igversion point of point \( \mathrm{B}(2,3) \) with respect to circle having centre \( (-1,2) \) and diameter \( 2 \sqrt{5} \) units.) AsM \( B\left(\frac{1}{2}, \frac{5}{2}\right) \)
Ask by Lewis Love. in Nepal
Mar 13,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The inversion point of \( B(2,3) \) is \( \left(\frac{1}{2}, \frac{5}{2}\right) \).
Solución
**Step 1. Identify the Given Information**
The circle has centre \( A(-1,2) \) and diameter \( 2\sqrt{5} \). Thus, the radius is
\[
r = \frac{2\sqrt{5}}{2} = \sqrt{5}.
\]
We are given the point
\[
B(2,3).
\]
**Step 2. Compute the Distance from the Centre to the Point \( B \)**
Let
\[
\overrightarrow{AB} = B - A = (2 - (-1),\, 3 - 2) = (3, 1).
\]
The distance \( |AB| \) is
\[
|AB| = \sqrt{3^2 + 1^2} = \sqrt{9+1} = \sqrt{10}.
\]
**Step 3. Use the Inversion Formula**
For the inversion of a point \( B \) with respect to a circle with centre \( A \) and radius \( r \), the inversion point \( B' \) lies on the line through \( A \) and \( B \) and satisfies
\[
|AB|\cdot |AB'| = r^2.
\]
Thus, we have
\[
|AB'| = \frac{r^2}{|AB|} = \frac{(\sqrt{5})^2}{\sqrt{10}} = \frac{5}{\sqrt{10}} = \frac{5\sqrt{10}}{10} = \frac{\sqrt{10}}{2}.
\]
**Step 4. Determine the Coordinates of \( B' \)**
Since \( A \), \( B \), and \( B' \) are collinear, we can express \( B' \) as
\[
B' = A + \lambda\, \overrightarrow{AB},
\]
with some scalar \( \lambda \). The distance \( |AB'| \) is also given by
\[
|AB'| = \lambda\, |AB|.
\]
Hence,
\[
\lambda\, |AB| = \frac{\sqrt{10}}{2} \quad \Longrightarrow \quad \lambda = \frac{\sqrt{10}}{2\sqrt{10}} = \frac{1}{2}.
\]
Now, substitute \( \lambda = \frac{1}{2} \):
\[
B' = \left(-1, 2\right) + \frac{1}{2}(3, 1) = \left(-1+\frac{3}{2},\, 2+\frac{1}{2}\right) = \left(\frac{-2+3}{2},\, \frac{4+1}{2}\right) = \left(\frac{1}{2},\, \frac{5}{2}\right).
\]
**Step 5. Conclusion**
The inversion of the point \( B(2,3) \) with respect to the circle is
\[
B'\left(\frac{1}{2}, \frac{5}{2}\right).
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
यो प्रश्नमा दिनु भएको वृत्तको केन्द्र \( (-1, 2) \) र व्यास \( 2\sqrt{5} \) हो भने, वृत्तको त्रिज्या \( \sqrt{5} \) हुनेछ। \( B(2, 3) \) को वृत्तको उत्कम बिन्दु पत्ता लगाउनको लागि, पहिला बिन्दुको वृत्तको समीकरणको अनुसार चेक गर्नुपर्छ। समीकरणमा \( (x + 1)^2 + (y - 2)^2 = 5 \) राख्दा \( B \) बिन्दु वृत्तमा छ कि छैन जाँच गर्न सक्छौं। पछि, बिन्दु \( B \) र वृत्तको केन्द्र बीचको दुरीका आधारमा परावर्तन बिन्दु पत्ता लगाउनका लागि सामान्य सूत्रहरू लागू गरियो भने, \( A\left(\frac{1}{2}, \frac{5}{2}\right) \) प्राप्त भएको छ।
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium