Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Let's break down the expression on the left-hand side first. We start with \( \frac{1+11}{4} - \frac{11}{7} + 8 \). Calculating \( \frac{1+11}{4} = \frac{12}{4} = 3 \). Now we have \( 3 - \frac{11}{7} + 8 \). Next, we can convert \( 3 \) and \( 8 \) into fractions with a common denominator (let's use 7): \( 3 = \frac{21}{7} \) and \( 8 = \frac{56}{7} \). So, combining these: \[ \frac{21}{7} - \frac{11}{7} + \frac{56}{7} = \frac{21 - 11 + 56}{7} = \frac{66}{7}. \] Now, let's evaluate the right-hand side: \( 11 + 3 = 14 \). Now we want to see if \( \frac{66}{7} \leq 14 \). To compare, we can express 14 in terms of the denominator 7: \( 14 = \frac{98}{7} \). Now, we compare: \[ \frac{66}{7} \leq \frac{98}{7}. \] Since 66 is less than 98, we can conclude: \( \frac{66}{7} \leq 14 \), so the inequality holds true. Thus, the original inequality is satisfied.
