(b) A man drives from Ibadan to Oyo, a distance of 48 km in 45 minutês. If he drives at \( 72 \mathrm{~km} / \mathrm{h} \) where the surface is good and \( 48 \mathrm{~km} / / \mathrm{wh} \) where it is bad, find the number of kilometres of good surface.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve this, let's denote the distance driven on good surface as \( x \) km and the distance on bad surface as \( 48 - x \) km. Given the speeds, the time taken for each surface can be expressed as: - Time on good surface: \( \frac{x}{72} \) hours - Time on bad surface: \( \frac{48 - x}{48} \) hours Since the man drives for a total time of 45 minutes (or \( \frac{3}{4} \) hours), we can set up the equation: \[ \frac{x}{72} + \frac{48 - x}{48} = \frac{3}{4} \] Multiplying through by the common denominator (which is 144) gives: \[ 2x + 3(48 - x) = 108 \] Simplifying this: \[ 2x + 144 - 3x = 108 \] \[ -x + 144 = 108 \] \[ -x = 108 - 144 \] \[ -x = -36 \rightarrow x = 36 \] Thus, the distance of good surface is \( 36 \) km. The remaining distance on bad surface is \( 48 - 36 = 12 \) km. So, the answer is that the man drove \( 36 \) km on good surface.
