Responder
The equation \( \frac{1+\tan x}{1-\tan x} = \frac{1+\sin 2x}{\cos 2x} \) is an identity, meaning it holds true for all real numbers \( x \) except when \( x = \frac{\pi}{4} + \frac{k\pi}{2} \) for any integer \( k \).
Solución
We start with the equation
\[
\frac{1+\tan x}{1-\tan x}=\frac{1+\sin 2x}{\cos 2x}.
\]
**Step 1. Express the left‐hand side as a tangent of a sum**
Recall that
\[
\tan\left(\frac{\pi}{4}+x\right)=\frac{1+\tan x}{1-\tan x}.
\]
Thus the left side becomes
\[
\tan\left(\frac{\pi}{4}+x\right).
\]
**Step 2. Rewrite the right‐hand side in terms of \(\tan x\) using double-angle formulas**
Let
\[
t=\tan x.
\]
We know the double-angle formulas:
\[
\sin2x=\frac{2t}{1+t^2}\quad\text{and}\quad \cos2x=\frac{1-t^2}{1+t^2}.
\]
Substitute these into the right-hand side:
\[
\frac{1+\sin2x}{\cos2x} = \frac{1+\frac{2t}{1+t^2}}{\frac{1-t^2}{1+t^2}} = \frac{\frac{1+t^2+2t}{1+t^2}}{\frac{1-t^2}{1+t^2}} = \frac{1+t^2+2t}{1-t^2}.
\]
Notice that the numerator is
\[
1+t^2+2t=(t+1)^2,
\]
and the denominator factors as
\[
1-t^2=(1-t)(1+t).
\]
Therefore,
\[
\frac{1+\sin2x}{\cos2x}=\frac{(t+1)^2}{(1-t)(1+t)}=\frac{t+1}{1-t},
\]
which is exactly the same as the expression for the left-hand side:
\[
\frac{1+\tan x}{1-\tan x}=\frac{t+1}{1-t}.
\]
**Step 3. Conclude the equation is an identity**
Since the left-hand side and the right-hand side simplify to the same expression (when defined), the equation is true for all \( x \) for which these expressions are defined.
**Step 4. Determine the restrictions on \( x \)**
The expressions are not defined when any denominator is zero. We have two restrictions:
1. From the left-hand side:
\[
1-\tan x \neq 0 \quad\Rightarrow\quad \tan x \neq 1.
\]
This implies
\[
x \neq \frac{\pi}{4}+k\pi,\quad k\in \mathbb{Z}.
\]
2. From the right-hand side:
\[
\cos2x \neq 0.
\]
This means
\[
2x\neq \frac{\pi}{2}+k\pi,\quad k\in \mathbb{Z}\quad \Rightarrow\quad x\neq\frac{\pi}{4}+\frac{k\pi}{2},\quad k\in \mathbb{Z}.
\]
Thus, the equation holds for all \( x \) except when
\[
x=\frac{\pi}{4}+\frac{k\pi}{2},\quad k\in \mathbb{Z}.
\]
**Final Answer**
The given equation holds for all real \( x \) with the restriction
\[
x\neq\frac{\pi}{4}+\frac{k\pi}{2},\quad k\in \mathbb{Z}.
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución