Pregunta
upstudy study bank question image url

(a) Find the general term \( \left(T_{n}\right) \) of each of the following linear number patterns: (1) \( 5 ; 8 ; 11 ; 14 ; \ldots \) (2) \( 1 ;-1 ;-3 ;-5 ; \ldots \) (b) The sequence \( x-1 ; 2 x-3 ; x+6 \) is a linear pattern. Determine (1) the value of \( x \). (2) the general ferm \( \left(T_{n}\right) \). (c) Determine the general 1erm of each of the following quadratic number patterns: (1) \( 2 ; 3 ; 8 ; 17 ; 30 ; \ldots \) (2) \( -5 ;-5 ;-3 ; 1 ; \ldots \) (3) \( 20 ; 14 ; 10 ; 8 ; \ldots \) (4) \( 6 ; 7: 5 ; 0 ; \ldots \)

Ask by Norton Rose. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) (1) \( T_n = 3n + 2 \) (2) \( T_n = -2n + 3 \) (b) (1) \( x = \frac{11}{2} \) (2) \( T_n = \frac{7n + 2}{2} \) (c) (1) \( T_n = n^2 + 2n - 1 \) (2) \( T_n = n^2 - 5n + 1 \) (3) \( T_n = -n^2 + 11n - 20 \) (4) \( T_n = -n^2 + 10n - 20 \)

Solución

Let's solve the problem step by step. ### (a) Finding the general term \( T_n \) of linear number patterns #### (1) Sequence: \( 5, 8, 11, 14, \ldots \) To find the general term of this sequence, we first identify the first term and the common difference. - First term \( a = 5 \) - Common difference \( d = 8 - 5 = 3 \) The general term of a linear sequence can be expressed as: \[ T_n = a + (n - 1)d \] Substituting the values: \[ T_n = 5 + (n - 1) \cdot 3 = 5 + 3n - 3 = 3n + 2 \] #### (2) Sequence: \( 1, -1, -3, -5, \ldots \) Again, we identify the first term and the common difference. - First term \( a = 1 \) - Common difference \( d = -1 - 1 = -2 \) Using the same formula for the general term: \[ T_n = a + (n - 1)d \] Substituting the values: \[ T_n = 1 + (n - 1)(-2) = 1 - 2n + 2 = -2n + 3 \] ### (b) The sequence \( x - 1, 2x - 3, x + 6 \) #### (1) Determine the value of \( x \) To find \( x \), we need to ensure that the sequence is linear. This means the difference between consecutive terms should be constant. Calculating the differences: - First difference: \( (2x - 3) - (x - 1) = 2x - 3 - x + 1 = x - 2 \) - Second difference: \( (x + 6) - (2x - 3) = x + 6 - 2x + 3 = -x + 9 \) Setting the two differences equal: \[ x - 2 = -x + 9 \] Solving for \( x \): \[ 2x = 11 \implies x = \frac{11}{2} \] #### (2) Determine the general term \( T_n \) Now substituting \( x = \frac{11}{2} \) into the terms: - First term: \( \frac{11}{2} - 1 = \frac{9}{2} \) - Second term: \( 2 \cdot \frac{11}{2} - 3 = 11 - 3 = 8 \) - Third term: \( \frac{11}{2} + 6 = \frac{11}{2} + \frac{12}{2} = \frac{23}{2} \) Now we can find the common difference: - First difference: \( 8 - \frac{9}{2} = \frac{16}{2} - \frac{9}{2} = \frac{7}{2} \) - Second difference: \( \frac{23}{2} - 8 = \frac{23}{2} - \frac{16}{2} = \frac{7}{2} \) The common difference is \( \frac{7}{2} \). Using the general term formula: \[ T_n = a + (n - 1)d \] Where \( a = \frac{9}{2} \) and \( d = \frac{7}{2} \): \[ T_n = \frac{9}{2} + (n - 1) \cdot \frac{7}{2} = \frac{9}{2} + \frac{7n - 7}{2} = \frac{7n + 2}{2} \] ### (c) Finding the general term of quadratic number patterns #### (1) Sequence: \( 2, 3, 8, 17, 30, \ldots \) To find the general term, we first calculate the first differences: - \( 3 - 2 = 1 \) - \( 8 - 3 = 5 \) - \( 17 - 8 = 9 \) - \( 30 - 17 = 13 \) Now, calculate the second differences: - \( 5 - 1 = 4 \) - \( 9 - 5 = 4 \) - \( 13 - 9 = 4 \) Since the second differences are constant, this is a quadratic sequence. The general form is: \[ T_n = an^2 + bn + c \] Using the first three terms to set up equations: 1. \( a(1^2) + b(1) + c = 2 \) → \( a + b + c = 2 \) 2. \( a(2^2) + b(2) + c = 3 \) → \( 4a + 2b + c = 3 \) 3. \( a(3^2) + b(3) + c = 8 \) → \( 9a + 3b + c = 8 \) Now we can solve this system of equations. #### (2) Sequence: \( -5, -5, -3, 1, \ldots \) Calculating the first differences: - \( -5 - (-5) = 0 \) - \( -3 - (-5) = 2 \) - \( 1 - (-3) = 4 \) Calculating the second differences: - \( 2 - 0 = 2 \) - \( 4 - 2 = 2 \) This is also a quadratic sequence. Using the same form \( T_n = an^2 + bn + c \) and setting up equations: 1. \( a + b + c = -5 \) 2. \( 4a + 2b + c = -5 \) 3. \( 9a + 3b + c = -3 \) #### (3) Sequence: \( 20, 14, 10, 8, \ldots \) Calculating the first differences: - \( 14 - 20 = -6 \) - \( 10 - 14 = -4 \) - \( 8 - 10 = -2 \) Calculating the second differences: - \( -4 - (-6) = 2 \) - \( -2 - (-4) = 2 \) This is also a quadratic sequence. Using the same form \( T_n = an^2 + bn + c \) and setting up equations: 1. \( a + b + c = 20 \) 2. \( 4a + 2b + c = 14 \) 3. \( 9a + 3b + c = 10 \) #### (4) Sequence:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle your queries, let’s delve into the fun world of number patterns! The general term \( T_n \) of a linear number pattern can be formulated as \( T_n = a + (n-1)d \), where \( a \) is the first term and \( d \) is the common difference. (1) For the pattern \( 5; 8; 11; 14; \ldots \): The first term \( a \) is \( 5 \) and the common difference \( d \) is \( 3 \). Thus, the general term is: \[ T_n = 5 + (n-1) \cdot 3 = 3n + 2. \] (2) For the pattern \( 1; -1; -3; -5; \ldots \): The first term \( a \) is \( 1 \) and \( d = -2 \). The general term is: \[ T_n = 1 + (n-1)(-2) = -2n + 3. \] Now onward to the magical quadratic patterns! (1) The sequence \( 2; 3; 8; 17; 30; \ldots \) shows second differences of \( 4, 4, 4 \), suggesting a quadratic form \( T_n = an^2 + bn + c \). Solving through known values gives \( T_n = n^2 + n + 2 \). (2) The sequence \( -5; -5; -3; 1; \ldots \) can be expressed as \( T_n = an^2 + bn + c \) as well, yielding differences that also confirm a quadratic formula. Here, solving gives \( T_n = n^2 - 6 \). (3) For the sequence \( 20; 14; 10; 8; \ldots \), we detect \( T_n = -n^2 + 22n - 72 \) after determining it is quadratic due to consistent second differences being -2. (4) Lastly, the sequence \( 6; 7; 5; 0; \ldots \) can be understood to yield \( T_n = -n^2 + 7n - 6 \), representing another quadratic form through second differences. There you have some playful breakdowns of those patterns! Happy exploring!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad