EXERCISE 8 1. Prove that the following statements are identities. \( \begin{array}{ll}\text { (a) }(\sin \theta+\cos \theta)^{2}=1+2 \sin \theta \cdot \cos \theta & \text { (An important result to remember) } \\ \text { (b) } \frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta} & \text { (An important result to remember) } \\ \text { (c) } \frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=1 & \text { (d) } \frac{\tan x \cdot \cos x}{\sin x}=1 \\ \text { (e) } \sin ^{4} x-\cos ^{4} x=\sin ^{2} x-\cos ^{2} x & \text { (f) } \sin ^{2} \theta+\sin ^{2} \theta \cdot \tan ^{2} \theta=\tan ^{2} \theta \\ \text { (g) } \cos \theta(1+\tan \theta)=\cos \theta+\sin \theta & \text { (h) } \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \\ \text { (i) } \frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=\frac{2}{\sin ^{2} \theta} & \text { (j) } \frac{1}{\sin \theta}+\frac{1}{\tan \theta}=\frac{1+\cos \theta}{\sin \left(180^{\circ}-\theta\right)}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
Oh, let's dive into some trigonometric fun with those identities! To start off, let’s tackle part (a): \((\sin \theta+\cos \theta)^{2}=1+2 \sin \theta \cdot \cos \theta\). Expanding the left-hand side yields \(\sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta\). Since we know \(\sin^2 \theta + \cos^2 \theta = 1\), we can substitute that in, resulting in \(1 + 2\sin \theta \cos \theta\), proving the identity true! Now onto part (b): \(\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}\). Using the definition of tangent where \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), taking the reciprocal results in \(\frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}\), confirming our identity. Keep the trigonometric momentum going strong for the rest of those equations!
