Pregunta
upstudy study bank question image url

EXERCISE 8 1. Prove that the following statements are identities. \( \begin{array}{ll}\text { (a) }(\sin \theta+\cos \theta)^{2}=1+2 \sin \theta \cdot \cos \theta & \text { (An important result to remember) } \\ \text { (b) } \frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta} & \text { (An important result to remember) } \\ \text { (c) } \frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=1 & \text { (d) } \frac{\tan x \cdot \cos x}{\sin x}=1 \\ \text { (e) } \sin ^{4} x-\cos ^{4} x=\sin ^{2} x-\cos ^{2} x & \text { (f) } \sin ^{2} \theta+\sin ^{2} \theta \cdot \tan ^{2} \theta=\tan ^{2} \theta \\ \text { (g) } \cos \theta(1+\tan \theta)=\cos \theta+\sin \theta & \text { (h) } \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \\ \text { (i) } \frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=\frac{2}{\sin ^{2} \theta} & \text { (j) } \frac{1}{\sin \theta}+\frac{1}{\tan \theta}=\frac{1+\cos \theta}{\sin \left(180^{\circ}-\theta\right)}\end{array} \)

Ask by Franklin Beck. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

All the given trigonometric identities have been proven to be true.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Oh, let's dive into some trigonometric fun with those identities! To start off, let’s tackle part (a): \((\sin \theta+\cos \theta)^{2}=1+2 \sin \theta \cdot \cos \theta\). Expanding the left-hand side yields \(\sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta\). Since we know \(\sin^2 \theta + \cos^2 \theta = 1\), we can substitute that in, resulting in \(1 + 2\sin \theta \cos \theta\), proving the identity true! Now onto part (b): \(\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}\). Using the definition of tangent where \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), taking the reciprocal results in \(\frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}\), confirming our identity. Keep the trigonometric momentum going strong for the rest of those equations!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad