Pregunta
upstudy study bank question image url

92. \( f(x)=\frac{x^{2}-16}{x+4} \)

Ask by Hanson Griffin. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function simplifies to \( f(x) = x - 4 \) for all \( x \) except \( x = -4 \).

Solución

We start with the function   f(x) = (x² – 16) / (x + 4). Step 1. Factor the numerator:   x² – 16 is a difference of two squares, so it factors as     x² – 16 = (x – 4)(x + 4). Step 2. Substitute the factored form back into the function:   f(x) = [(x – 4)(x + 4)] / (x + 4). Step 3. Cancel the common factor:   The factor (x + 4) cancels from the numerator and the denominator, but note that cancellation is only valid if (x + 4) ≠ 0. Therefore, x must not equal –4.   After canceling, we have     f(x) = x – 4  (for x ≠ –4). Step 4. Domain and interpretation:   The simplified expression is f(x) = x – 4 for all x except x = –4. Although the algebra simplifies to a linear function, the original function is not defined at x = –4 because it would cause division by zero.   Graphically, this means that the graph of f(x) is the line y = x – 4 with a hole (a removable discontinuity) at x = –4. Final Answer:   The function simplifies to f(x) = x – 4 for x ≠ –4.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

This function has a classic case of simplification! You can factor the numerator \(x^2 - 16\) as \((x - 4)(x + 4)\). This means that \(f(x)\) simplifies to \(f(x) = \frac{(x - 4)(x + 4)}{x + 4}\), but remember, the \(x + 4\) term cancels out only when \(x \neq -4\). So, the simplified result is \(f(x) = x - 4\) for \(x \neq -4\). Also, always keep in mind that while algebraic simplifications can make functions more manageable, they can also hide important details like discontinuities. In this case, \(f(x)\) is undefined at \(x = -4\), which is where the original function had a removable discontinuity. Just remember: you haven't erased a hole in the graph, you're just giving it a slight detour!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad