Explain how Sind the value of each lrnit e) \( \lim _{x \rightarrow 2^{+}} \frac{(x+5)^{3}(x-1)^{2}}{(x+2)^{3}(x-2)^{2}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the limit \( \lim _{x \rightarrow 2^{+}} \frac{(x+5)^{3}(x-1)^{2}}{(x+2)^{3}(x-2)^{2}} \), we can start by substituting \( x = 2 \) directly into the function. The numerator becomes \( (2+5)^{3}(2-1)^{2} = 7^{3} \cdot 1^{2} = 343 \). The denominator turns into \( (2+2)^{3}(2-2)^{2} = 4^{3} \cdot 0^{2} = 64 \cdot 0 = 0 \). Since the denominator approaches zero and the numerator approaches a non-zero value as \( x \) approaches \( 2 \) from the right, the limit diverges to positive infinity. Hence, we have: \[ \lim _{x \rightarrow 2^{+}} \frac{(x+5)^{3}(x-1)^{2}}{(x+2)^{3}(x-2)^{2}} = +\infty \] So, the limit is \( +\infty \).
