Pregunta
upstudy study bank question image url

An airplane crosses the Atlantic Ocean ( 3000 miles) with an airspeed of 550 miles per hour. The cost C (in dollars) per passenger is given by \( C(x)=75+\frac{x}{10}+\frac{32,000}{x} \), where \( x \) is the ground speed (airspeed \( \pm \) wind). (a) What is the cost per passenger for quiescent (no wind) conditions? \( \$ 188.18 \) (Round to the nearest cent as needed.) (b) What is the cost per passenger with a head wind of 50 miles per hour? \( \$ 189 \) (Round Io the nearest cent as needed.) (c) What is the cost per passenger with a tail wind of 100 miles per hour? \( \$ 189.23 \) (Round to the nearest cent as needed.) (d) What is the cost per passenger with a head wind of 100 miles per hour? \( \$ \square \) (Round to the nearest cent as needed.)

Ask by Bartlett Chandler. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The cost per passenger is: - (a) \$188.18 - (b) \$189.00 - (c) \$189.23 - (d) \$191.11

Solución

To solve the problem, we will follow these steps: 1. **Identify the known conditions:** - Distance across the Atlantic Ocean: \( 3000 \) miles - Airspeed of the airplane: \( 550 \) miles per hour - Cost function: \( C(x) = 75 + \frac{x}{10} + \frac{32,000}{x} \) 2. **Calculate the ground speed for each scenario:** - For quiescent conditions (no wind), the ground speed \( x \) is equal to the airspeed. - For a head wind, the ground speed \( x \) is the airspeed minus the wind speed. - For a tail wind, the ground speed \( x \) is the airspeed plus the wind speed. Now, let's calculate each part step by step. ### (a) Cost per passenger for quiescent (no wind) conditions - Ground speed \( x = 550 \) mph. - Substitute \( x \) into the cost function: \[ C(550) = 75 + \frac{550}{10} + \frac{32,000}{550} \] Calculating each term: 1. \( \frac{550}{10} = 55 \) 2. \( \frac{32,000}{550} \approx 58.18 \) Now, summing these values: \[ C(550) = 75 + 55 + 58.18 = 188.18 \] ### (b) Cost per passenger with a head wind of 50 miles per hour - Ground speed \( x = 550 - 50 = 500 \) mph. - Substitute \( x \) into the cost function: \[ C(500) = 75 + \frac{500}{10} + \frac{32,000}{500} \] Calculating each term: 1. \( \frac{500}{10} = 50 \) 2. \( \frac{32,000}{500} = 64 \) Now, summing these values: \[ C(500) = 75 + 50 + 64 = 189 \] ### (c) Cost per passenger with a tail wind of 100 miles per hour - Ground speed \( x = 550 + 100 = 650 \) mph. - Substitute \( x \) into the cost function: \[ C(650) = 75 + \frac{650}{10} + \frac{32,000}{650} \] Calculating each term: 1. \( \frac{650}{10} = 65 \) 2. \( \frac{32,000}{650} \approx 49.23 \) Now, summing these values: \[ C(650) = 75 + 65 + 49.23 = 189.23 \] ### (d) Cost per passenger with a head wind of 100 miles per hour - Ground speed \( x = 550 - 100 = 450 \) mph. - Substitute \( x \) into the cost function: \[ C(450) = 75 + \frac{450}{10} + \frac{32,000}{450} \] Calculating each term: 1. \( \frac{450}{10} = 45 \) 2. \( \frac{32,000}{450} \approx 71.11 \) Now, summing these values: \[ C(450) = 75 + 45 + 71.11 = 191.11 \] ### Final Answers: - (a) Cost per passenger for quiescent conditions: \( \$188.18 \) - (b) Cost per passenger with a head wind of 50 mph: \( \$189.00 \) - (c) Cost per passenger with a tail wind of 100 mph: \( \$189.23 \) - (d) Cost per passenger with a head wind of 100 mph: \( \$191.11 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Historical Background: The cost function for passenger flights has evolved significantly since the dawn of aviation. In the early 20th century, flying was a luxury only the wealthy could afford, with tickets costing as much as a month’s salary for a middle-class worker. As technology advanced and airlines sought to attract more passengers, understanding the economic factors contributing to ticket costs became crucial. The introduction of cost functions like the one you're using allows airlines to analyze and optimize their pricing strategies based on various factors, including ground speed, wind conditions, and overall operational costs. Real-World Application: Understanding the economics of flight can help airlines efficiently manage prices, ensure profitable routes, and gauge how external factors like wind impact operational costs. For passengers, being aware of these calculations can inform decisions about travel times, costs, and even the potential for delays. If you're traveling, you might even identify the best times to fly based on historical weather patterns to avoid those pesky headwinds that can inflate your ticket price!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad