Find the derivative s) \( y=\cos ^{4} x+\sin ^{4} x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the derivative \( y' \) of the function \( y = \cos^4 x + \sin^4 x \), we can apply the chain rule and the power rule. The derivatives of \( \cos^4 x \) and \( \sin^4 x \) are found by differentiating them separately: 1. For \( \cos^4 x \): \[ \frac{d}{dx}(\cos^4 x) = 4\cos^3 x \cdot (-\sin x) = -4\cos^3 x \sin x \] 2. For \( \sin^4 x \): \[ \frac{d}{dx}(\sin^4 x) = 4\sin^3 x \cdot \cos x = 4\sin^3 x \cos x \] Now combine these results: \[ y' = -4\cos^3 x \sin x + 4\sin^3 x \cos x \] We can factor out the common term: \[ y' = 4\cos x \sin x (-\cos^2 x + \sin^2 x) \] Thus, the final derivative is: \[ y' = 4\cos x \sin x (\sin^2 x - \cos^2 x) \]
preguntas relacionadas
