For which value(s) of \( m \) will the following expressions have equal roots? \( \begin{array}{ll}\text { (1) } x^{2}+2 m=8 x & \text { (2) } x^{2}+m x+9=0 \\ \text { ((3)) } x^{2}-m x+2 x+1=0 \end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To determine the values of \( m \) for which the given expressions have equal roots, we need to find the condition where the discriminant of the quadratic equations equals zero. 1. For the first equation \( x^{2} - 8x + 2m = 0 \): \[ \text{Discriminant} = b^2 - 4ac = (-8)^2 - 4 \cdot 1 \cdot 2m = 64 - 8m \] Setting the discriminant to zero for equal roots: \[ 64 - 8m = 0 \implies 8m = 64 \implies m = 8 \] 2. For the second equation \( x^{2} + mx + 9 = 0 \): \[ \text{Discriminant} = m^2 - 4 \cdot 1 \cdot 9 = m^2 - 36 \] Setting the discriminant to zero: \[ m^2 - 36 = 0 \implies m^2 = 36 \implies m = 6 \text{ or } m = -6 \] 3. For the third equation \( x^{2} + (2-m)x + 1 = 0 \): \[ \text{Discriminant} = (2-m)^2 - 4 \cdot 1 \cdot 1 = (2-m)^2 - 4 \] Setting the discriminant to zero: \[ (2-m)^2 - 4 = 0 \implies (2-m)^2 = 4 \implies 2 - m = 2 \text{ or } 2 - m = -2 \] Thus, \( m = 0 \text{ or } m = 4 \). Now, consolidating the values of \( m \): - From the first expression, we have \( m = 8 \). - From the second expression, we have \( m = 6 \) or \( m = -6 \). - From the third expression, we have \( m = 0 \) or \( m = 4 \). The values of \( m \) that yield equal roots for all expressions are \( m = 8, 6, -6, 0, 4 \).
