Use reference angles to find the exact value of the foliowing expresision \( \tan \frac{7 \pi}{3} \) Select the correct chaice below and if necessary, fill in the answer box to camptere your chotce A. \( \frac{7 \pi}{3}= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find \( \tan \frac{7 \pi}{3} \), first, we need to simplify the angle. Since \( \frac{7 \pi}{3} \) is more than \( 2\pi \), we can subtract \( 2\pi \) (which is \( \frac{6\pi}{3} \)) from it: \[ \frac{7 \pi}{3} - \frac{6 \pi}{3} = \frac{\pi}{3} \] So, \( \tan \frac{7 \pi}{3} = \tan \frac{\pi}{3} \). The exact value of \( \tan \frac{\pi}{3} \) is: \[ \tan \frac{\pi}{3} = \sqrt{3} \] Therefore, the final answer is: \[ \tan \frac{7 \pi}{3} = \sqrt{3} \]
