Pregunta
upstudy study bank question image url

\begin{tabular}{l} 16) Claire is building a rectangular frame to hold her stretched canvas painting. She has 14 feet of wood to build to the \\ frame. \\ Diagram: \\ a) Write an equation \( A(w) \) for the area of the stretched \\ canvas in terms of the width. \\ Calculator window: \( x:[\quad \) b) What is the maximum possible area for the painting? \\ \hline\end{tabular}

Ask by John Griffin. in the United States
Feb 07,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The area \( A(w) \) in terms of the width \( w \) is \( A(w) = 7w - w² \). b) The maximum possible area for the painting is 12.25 square feet.

Solución

We start by letting the width of the rectangle be w (in feet). Since Claire has 14 feet of wood, and a rectangle has two widths and two lengths, the perimeter is given by   2(w + l) = 14 Solving for the length l:   w + l = 7  ⟹  l = 7 - w Now, the area A of the painting is the product of the width and the length:   A(w) = w(7 - w) = 7w - w² This is the equation for the area in terms of the width. To find the maximum possible area, notice that A(w) = 7w - w² is a quadratic function that opens downward (since the coefficient of w² is -1). The maximum occurs at the vertex of the parabola. For a quadratic in the form A(w) = aw² + bw + c, the vertex is found at   w = -b/(2a). Here, a = -1 and b = 7, so   w = -7/(2 * -1) = 7/2 = 3.5 feet. Substitute w = 3.5 back into the area function:   A(3.5) = 7(3.5) - (3.5)² = 24.5 - 12.25 = 12.25 square feet. Therefore: a) The area function is A(w) = 7w - w². b) The maximum possible area is 12.25 square feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation for the area of the stretched canvas in terms of the width \( w \), we start by letting the width of the frame be \( w \) and the length be \( l \). The perimeter of the rectangular frame is given by the equation: \[ 2l + 2w = 14 \] Simplifying this, we find: \[ l + w = 7 \implies l = 7 - w \] The area \( A \) of the rectangle can be expressed as: \[ A(w) = l \cdot w = (7 - w)w = 7w - w^2 \] For the maximum possible area, we can determine this by finding the vertex of the quadratic equation \( A(w) = -w^2 + 7w \). The vertex occurs at: \[ w = \frac{-b}{2a} = \frac{-7}{2 \times -1} = \frac{7}{2} = 3.5 \text{ feet} \] Substituting \( w = 3.5 \) back into the area equation gives: \[ A(3.5) = 7(3.5) - (3.5)^2 = 24.5 - 12.25 = 12.25 \text{ square feet} \] So, the maximum possible area for Claire's painting is 12.25 square feet!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad