\( 2.2 e^{x}-(3+e)=-3 e^{1-x} \) 3 Find the first four terms in the Binomial expansion of \( \frac{1}{\left(\frac{1}{\ln e}+e^{\ln (-3 x)}\right)^{2}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the equation \( 2.2 e^{x}-(3+e)=-3 e^{1-x} \), we first rearrange it to isolate terms involving \( e^x \). This simplifies to \( 2.2 e^{x} + 3 e^{1-x} = 3 + e \). Next, we can substitute \( e^{1-x} = \frac{e}{e^x} \) to make it easier to work with. Once we find \( x \), we can use that in the second part. Now, for the binomial expansion of \( \frac{1}{\left(\frac{1}{\ln e} + e^{\ln (-3x)}\right)^{2}} \), note that \( e^{\ln (-3x)} = -3x \) using the property of logarithms. So we essentially want to expand \( \frac{1}{\left(1 + (-3x)\right)^{2}} \). Utilizing the binomial series, we can write: \[ \frac{1}{(1 - 3x)^{2}} = \sum_{n=0}^{\infty} \binom{n+1}{1} (3x)^n \] The first four terms would be: 1. \( \binom{1}{1}(3x)^0 = 1 \) 2. \( \binom{2}{1}(3x)^1 = 6x \) 3. \( \binom{3}{1}(3x)^2 = 27x^2 \) 4. \( \binom{4}{1}(3x)^3 = 108x^3 \) Thus, the first four terms are \( 1 + 6x + 27x^2 + 108x^3 \).
