Pregunta
3. a. \( 2^{5} \times 2^{-3} \) b. \( 4^{3} \div 4^{-4} \) c. \( 2 a^{-2} \times 3 a^{3} \times a^{0} \)
Ask by Fernandez Gonzalez. in South Africa
Feb 20,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
a. 4
b. 16384
c. 6a
Solución
Simplify the expression by following steps:
- step0: Solution:
\(2a^{-2}\times 3a^{3}\times a^{0}\)
- step1: Evaluate the power:
\(2a^{-2}\times 3a^{3}\times 1\)
- step2: Rewrite the expression:
\(2a^{-2}\times 3a^{3}\)
- step3: Multiply the terms:
\(6a^{-2}\times a^{3}\)
- step4: Multiply the terms:
\(6a^{-2+3}\)
- step5: Add the numbers:
\(6a\)
Calculate or simplify the expression \( 4^{3} / 4^{-4} \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{4^{3}}{4^{-4}}\)
- step1: Multiply by \(a^{-n}:\)
\(4^{3}\times 4^{4}\)
- step2: Multiply:
\(4^{3+4}\)
- step3: Add the numbers:
\(4^{7}\)
- step4: Evaluate the power:
\(16384\)
Calculate or simplify the expression \( 2^{5} * 2^{-3} \).
Calculate the value by following steps:
- step0: Calculate:
\(2^{5}\times 2^{-3}\)
- step1: Multiply:
\(2^{5-3}\)
- step2: Subtract the numbers:
\(2^{2}\)
- step3: Evaluate the power:
\(4\)
Here are the solutions for each part of the problem:
### a. \( 2^{5} \times 2^{-3} \)
To simplify this expression, we can use the property of exponents that states \( a^{m} \times a^{n} = a^{m+n} \).
\[
2^{5} \times 2^{-3} = 2^{5 + (-3)} = 2^{2} = 4
\]
**Result:** \( 4 \)
---
### b. \( 4^{3} \div 4^{-4} \)
For division of exponents, we use the property \( a^{m} \div a^{n} = a^{m-n} \).
\[
4^{3} \div 4^{-4} = 4^{3 - (-4)} = 4^{3 + 4} = 4^{7}
\]
Calculating \( 4^{7} \):
\[
4^{7} = (2^{2})^{7} = 2^{14} = 16384
\]
**Result:** \( 16384 \)
---
### c. \( 2 a^{-2} \times 3 a^{3} \times a^{0} \)
Using the properties of exponents, we can simplify this expression step by step:
1. Combine the coefficients: \( 2 \times 3 = 6 \)
2. Combine the \( a \) terms: \( a^{-2} \times a^{3} \times a^{0} = a^{-2 + 3 + 0} = a^{1} = a \)
Putting it all together:
\[
2 a^{-2} \times 3 a^{3} \times a^{0} = 6 a
\]
**Result:** \( 6a \)
---
### Summary of Results:
- a. \( 4 \)
- b. \( 16384 \)
- c. \( 6a \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To solve \( 2^{5} \times 2^{-3} \), we combine the exponents since the bases are the same. This gives us \( 2^{5 + (-3)} = 2^{2} = 4 \). For \( 4^{3} \div 4^{-4} \), remember that dividing means subtracting exponents. So, we have \( 4^{3 - (-4)} = 4^{3 + 4} = 4^{7} = 16384 \). For \( 2 a^{-2} \times 3 a^{3} \times a^{0} \), we first use the associative property and multiply the coefficients: \( 2 \times 3 = 6 \). Then we combine the exponents: \( a^{-2} \times a^{3} \times a^{0} = a^{-2 + 3 + 0} = a^{1} = a \). Thus, the final answer is \( 6a \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium