Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\[ x^{2} + 8x + 12 = (x + 2)(x + 6) \]
Solución
Certainly! Let's work on factoring the quadratic expression:
\[ x^{2} + 8x + 12 \]
**Step 1: Identify the Coefficients**
A quadratic expression is generally in the form:
\[ ax^{2} + bx + c \]
For the given expression:
- \( a = 1 \)
- \( b = 8 \)
- \( c = 12 \)
**Step 2: Find Two Numbers that Multiply to \( a \times c \) and Add to \( b \)**
We need two numbers that satisfy:
- **Product**: \( a \times c = 1 \times 12 = 12 \)
- **Sum**: \( b = 8 \)
Let's list the factors of 12:
- \( 1 \times 12 \) (Sum: 13)
- \( 2 \times 6 \) (Sum: 8)
- \( 3 \times 4 \) (Sum: 7)
The pair \( 2 \) and \( 6 \) meets both criteria.
**Step 3: Write the Factored Form**
Using the numbers \( 2 \) and \( 6 \), we can write:
\[ x^{2} + 8x + 12 = (x + 2)(x + 6) \]
**Verification:**
To ensure the factoring is correct, expand the product:
\[ (x + 2)(x + 6) = x(x + 6) + 2(x + 6) = x^2 + 6x + 2x + 12 = x^2 + 8x + 12 \]
This matches the original expression, confirming that the factorization is correct.
**Final Answer:**
\[ x^{2} + 8x + 12 = (x + 2)(x + 6) \]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To factor the quadratic expression \( x^{2}+8x+12 \), you can look for two numbers that multiply to 12 (the constant term) and add to 8 (the coefficient of \( x \)). The numbers 2 and 6 fit perfectly! Thus, you can rewrite the expression as \( (x + 2)(x + 6) \). If you want to check your work, simply expand \( (x + 2)(x + 6) \) back out. You'll get \( x^2 + 6x + 2x + 12 \), which simplifies back to \( x^2 + 8x + 12 \). Voilà! You've successfully factored it.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium