Pregunta
upstudy study bank question image url

7. Find the percentage decrease in weight of a body when taken 16 km below the surface of the Earth. What happens to the weight of the body when it is taken to the center of the Earth? Given \( R_{e}=6400 \mathrm{~km} \).

Ask by Rojas Savage. in Canada
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When an object is 16 km below the Earth's surface, its weight decreases by about 0.25%. At the Earth's center, its weight becomes zero.

Solución

For an object at the Earth’s surface, the gravitational acceleration is given by   g = GM/R² When the object is at a depth d (here, d = 16 km), its distance from the Earth’s center becomes   r = R – d Assuming that the Earth has uniform density, the gravitational acceleration inside the Earth varies linearly with distance from the center. Thus, at depth d the gravitational acceleration is   g' = g × (r/R) = g × ((R – d)/R) For R = 6400 km and d = 16 km, we have   g' = g × ((6400 – 16)/6400) = g × (6384/6400) Calculating the fraction:   6384/6400 = 1 – (16/6400) = 1 – 0.0025 = 0.9975 So, the weight (which is proportional to the gravitational acceleration) decreases by   (1 – 0.9975) × 100% = 0.25% Thus, when the object is taken 16 km below the surface, its weight decreases by approximately 0.25%. Now, when the object is taken to the center of the Earth, r = 0. Since the gravitational acceleration inside is given by   g' = g × (r/R) at the center, g' = 0. This means that the object experiences no net gravitational force at the center—its weight effectively becomes zero. In summary: 1. The weight decreases by approximately 0.25% when taken 16 km below the surface. 2. At the center of the Earth, the weight becomes zero.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When you go 16 km below the Earth's surface, the weight of a body changes due to the reduction in gravitational force as you get closer to the center. The formula for weight decrease can be applied here, where the effective gravitational force decreases with depth. The percentage decrease in weight can be calculated using the formula: \[ \text{Weight at depth} = \text{Weight on surface} \times \left(1 - \frac{d}{R_e}\right) \] For \(d = 16\) km and \(R_e = 6400\) km, you can find the weight reduction to be about 0.25%. Once you reach the center of the Earth, things get even more interesting! At the center, the gravitational force acting on the body becomes zero due to the symmetrical distribution of the mass around it. Hence, the weight of the body effectively becomes zero, giving a whole new meaning to “weightlessness”!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad