1) Transformar el ángulo de grados a rad: Irigonometría \( \begin{array}{llll}\text { a) } 150 & \text { b) } 35^{\circ} & \text { e) } 80^{\circ} & \text { d) } 150^{\circ} \\ \text { e) } 90^{\circ} & \text { f) } 60^{\circ} & \text { g) } 200^{\circ} & \text { h) } 30^{\circ}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
Para convertir grados a radianes, utilizamos la relación de que \(\pi\) radianes son equivalentes a \(180^\circ\). Entonces, para transformar un ángulo en grados a radianes, la fórmula es: \[ radianes = grados \times \left( \frac{\pi}{180} \right) \] Ahora, haciendo los cálculos para los ángulos que has proporcionado: a) \(150^\circ\) \[ 150 \times \left( \frac{\pi}{180} \right) = \frac{5\pi}{6} \text{ rad} \] b) \(35^\circ\) \[ 35 \times \left( \frac{\pi}{180} \right) = \frac{7\pi}{36} \text{ rad} \] c) \(80^\circ\) \[ 80 \times \left( \frac{\pi}{180} \right) = \frac{4\pi}{9} \text{ rad} \] d) \(150^\circ\) (repetido) \[ 150 \times \left( \frac{\pi}{180} \right) = \frac{5\pi}{6} \text{ rad} \] e) \(90^\circ\) \[ 90 \times \left( \frac{\pi}{180} \right) = \frac{\pi}{2} \text{ rad} \] f) \(60^\circ\) \[ 60 \times \left( \frac{\pi}{180} \right) = \frac{\pi}{3} \text{ rad} \] g) \(200^\circ\) \[ 200 \times \left( \frac{\pi}{180} \right) = \frac{10\pi}{9} \text{ rad} \] h) \(30^\circ\) \[ 30 \times \left( \frac{\pi}{180} \right) = \frac{\pi}{6} \text{ rad} \] Entonces, los radianes para los ángulos dados son: - a) \(150^\circ = \frac{5\pi}{6} \text{ rad}\) - b) \(35^\circ = \frac{7\pi}{36} \text{ rad}\) - c) \(80^\circ = \frac{4\pi}{9} \text{ rad}\) - d) \(150^\circ = \frac{5\pi}{6} \text{ rad}\) - e) \(90^\circ = \frac{\pi}{2} \text{ rad}\) - f) \(60^\circ = \frac{\pi}{3} \text{ rad}\) - g) \(200^\circ = \frac{10\pi}{9} \text{ rad}\) - h) \(30^\circ = \frac{\pi}{6} \text{ rad}\)
