Responder
There are no solutions for \( x \) in the interval \( [0^{\circ}, 360^{\circ}] \) that satisfy \( f(x) = 2 \).
Solución
Let's break down the problem step by step.
### Part 1: Deriving the formula for \( \cos(x+y) \)
We start with the given identity:
\[
\cos(x-1) = \cos x \cdot \cos y + \sin x \cdot \sin y
\]
This is a form of the cosine of a difference identity. To derive the formula for \( \cos(x+y) \), we can use the cosine of a sum identity, which states:
\[
\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y
\]
To show that the two identities are related, we can manipulate the first identity.
1. **Rearranging the first identity**:
\[
\cos(x-1) = \cos x \cdot \cos y + \sin x \cdot \sin y
\]
We can express \( \cos(x-1) \) using the cosine of a sum:
\[
\cos(x-1) = \cos x \cdot \cos 1 + \sin x \cdot \sin 1
\]
2. **Setting \( y = 1 \)**:
If we set \( y = 1 \), we can see that:
\[
\cos(x-1) = \cos x \cdot \cos 1 + \sin x \cdot \sin 1
\]
This matches the form of the cosine of a sum identity.
3. **Conclusion**:
Thus, we can conclude that:
\[
\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y
\]
### Part 2: Simplifying the expression
Now we need to simplify the expression:
\[
\frac{\cos(90^{\circ}-x) \cdot \cos y + \sin(-y) \cdot \cos(180+x)}{\cos x \cdot \cos(360+y) + \sin(360^{\circ}-x) \cdot \sin y}
\]
1. **Using trigonometric identities**:
- \( \cos(90^{\circ}-x) = \sin x \)
- \( \sin(-y) = -\sin y \)
- \( \cos(180+x) = -\cos x \)
- \( \cos(360+y) = \cos y \)
- \( \sin(360^{\circ}-x) = -\sin x \)
2. **Substituting these identities**:
The numerator becomes:
\[
\sin x \cdot \cos y - \sin y \cdot (-\cos x) = \sin x \cdot \cos y + \sin y \cdot \cos x
\]
The denominator becomes:
\[
\cos x \cdot \cos y - \sin x \cdot \sin y
\]
3. **Final expression**:
Thus, the expression simplifies to:
\[
\frac{\sin x \cdot \cos y + \sin y \cdot \cos x}{\cos x \cdot \cos y - \sin x \cdot \sin y}
\]
### Part 3: Solving for \( x \) in \( f(x) = 2 \)
Given:
\[
f(x) = \sqrt{6 \sin^2 x - 11 \cos(90+x) + 7}
\]
We need to solve for \( x \) in the interval \( [0^{\circ}, 360^{\circ}] \) when \( f(x) = 2 \).
1. **Setting up the equation**:
\[
\sqrt{6 \sin^2 x - 11 \cos(90+x) + 7} = 2
\]
2. **Squaring both sides**:
\[
6 \sin^2 x - 11 \cos(90+x) + 7 = 4
\]
Simplifying gives:
\[
6 \sin^2 x - 11(-\sin x) + 7 = 4
\]
\[
6 \sin^2 x + 11 \sin x + 3 = 0
\]
3. **Letting \( y = \sin x \)**:
The equation becomes:
\[
6y^2 + 11y + 3 = 0
\]
4. **Using the quadratic formula**:
\[
y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-11 \pm \sqrt{11^2 - 4 \cdot 6 \cdot 3}}{2 \cdot 6}
\]
\[
= \frac{-11 \pm \sqrt{121 - 72}}{12} = \frac{-11 \pm \sqrt{49}}{12} = \frac{-11 \pm 7}{12}
\]
5. **Calculating the roots**:
- \( y_1 = \frac{-4}{12} = -\frac{1}{3} \) (not valid since \( \sin x \) must be between -1 and 1)
- \( y_2 = \frac{-18}{12} = -\frac{3}{2} \) (not valid)
Since both roots are invalid, we need to check if there are any solutions in the interval \( [0^{\circ}, 360^{\circ}] \) for \( f(x) = 2 \).
### Conclusion
The expression simplifies to a form that can be analyzed further, and the function \( f(x) = 2 \) does not yield valid solutions in the specified interval. Thus, there are no solutions for \( x \) in \( [0^{\circ}, 360^{\circ}] \) such that \( f(x) = 2 \).
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución