Pregunta
6. Solve: a) \( \sin \theta \cdot \cos 30^{\circ}+\cos \theta \cdot \sin 30^{\circ}=0,5 \) b) \( \sin \theta \cdot \sin 20^{\circ}+\cos \theta \cdot \cos 20^{\circ}=\sin 50^{\circ} \) Find \( \theta \in\left[-180^{\circ} ; 180^{\circ}\right] \operatorname{such} \) that: a) \( \sin 5 \theta \cdot \cos 20^{\circ}-\cos 5 \theta \cdot \sin 20^{\circ}=1 \) b) \( 2 \cos 3 \theta \cdot \cos 30^{\circ}-2 \sin 3 \theta \cdot \sin 30^{\circ}=1 \)
Ask by Wade Murray. in South Africa
Mar 10,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Solutions for the equations are:
1(a) \( \theta = 360^{\circ} k \) or \( \theta = 120^{\circ} + 360^{\circ} k \), where \( k \) is an integer.
1(b) \( \theta = 60^{\circ} + 360^{\circ} k \) or \( \theta = -20^{\circ} + 360^{\circ} k \), where \( k \) is an integer.
2(a) \( \theta = -122^{\circ}, -50^{\circ}, 22^{\circ}, 94^{\circ}, 166^{\circ} \).
2(b) \( \theta = 10^{\circ} + 120^{\circ} k \) or \( \theta = 90^{\circ} + 120^{\circ} k \), where \( k \) is an integer.
Solución
We first note that both parts consist of rewriting the given expressions by using trigonometric addition formulas.
---
### 1(a)
We are to solve
\[
\sin \theta \cdot \cos 30^{\circ} + \cos \theta \cdot \sin 30^{\circ} = 0.5.
\]
Using the sine addition formula
\[
\sin(\theta + 30^{\circ}) = \sin \theta \cos 30^{\circ} + \cos \theta \sin 30^{\circ},
\]
the equation becomes
\[
\sin (\theta + 30^{\circ}) = 0.5.
\]
Since \(\sin \alpha = 0.5\) when
\[
\alpha = 30^{\circ} + 360^{\circ} k\quad \text{or}\quad \alpha = 150^{\circ} + 360^{\circ} k,\quad k\in\mathbb{Z},
\]
we set
\[
\theta + 30^{\circ} = 30^{\circ} + 360^{\circ} k\quad \text{or}\quad \theta + 30^{\circ} = 150^{\circ} + 360^{\circ} k.
\]
Solving these:
1. For \(\theta + 30^{\circ} = 30^{\circ} + 360^{\circ} k\):
\[
\theta = 360^{\circ} k.
\]
2. For \(\theta + 30^{\circ} = 150^{\circ} + 360^{\circ} k\):
\[
\theta = 120^{\circ} + 360^{\circ} k.
\]
Thus, the solutions are
\[
\theta = 360^{\circ} k \quad \text{or} \quad \theta = 120^{\circ} + 360^{\circ} k,\quad k\in\mathbb{Z}.
\]
---
### 1(b)
We now solve
\[
\sin \theta \cdot \sin 20^{\circ} + \cos \theta \cdot \cos 20^{\circ}=\sin 50^{\circ}.
\]
Note that the cosine addition formula is
\[
\cos(\theta - 20^{\circ}) = \cos \theta \cos 20^{\circ} + \sin \theta \sin 20^{\circ}.
\]
Thus, the left-hand side becomes
\[
\cos(\theta - 20^{\circ}).
\]
So the equation is
\[
\cos(\theta - 20^{\circ}) = \sin 50^{\circ}.
\]
Recognize that \(\sin50^{\circ}=\cos40^{\circ}\). Therefore, the equation is
\[
\cos(\theta - 20^{\circ}) = \cos 40^{\circ}.
\]
For \(\cos \alpha = \cos \beta\), the general solution is
\[
\alpha = \beta + 360^{\circ} k \quad \text{or} \quad \alpha = -\beta + 360^{\circ} k,\quad k \in\mathbb{Z}.
\]
Thus, setting \(\alpha = \theta-20^{\circ}\) and \(\beta = 40^{\circ}\):
1. \(\theta - 20^{\circ} = 40^{\circ} + 360^{\circ} k\) gives
\[
\theta = 60^{\circ} + 360^{\circ} k.
\]
2. \(\theta - 20^{\circ} = -40^{\circ} + 360^{\circ} k\) gives
\[
\theta = -20^{\circ} + 360^{\circ} k.
\]
Thus, the solutions are
\[
\theta = 60^{\circ} + 360^{\circ} k\quad \text{or}\quad \theta = -20^{\circ} + 360^{\circ} k,\quad k\in\mathbb{Z}.
\]
---
Now we turn to the next two problems where we also require that \(\theta \in [-180^{\circ}, 180^{\circ}]\).
---
### 2(a)
We wish to find \(\theta \in [-180^{\circ}, 180^{\circ}]\) such that
\[
\sin 5\theta \cdot \cos 20^{\circ} - \cos 5\theta \cdot \sin 20^{\circ} = 1.
\]
Recognize that
\[
\sin 5\theta \cos 20^{\circ} - \cos 5\theta \sin 20^{\circ} = \sin(5\theta - 20^{\circ})
\]
by the sine subtraction formula. Thus, the equation becomes
\[
\sin(5\theta - 20^{\circ}) = 1.
\]
We know that \(\sin \alpha = 1\) when
\[
\alpha = 90^{\circ} + 360^{\circ} k,\quad k\in\mathbb{Z}.
\]
So set
\[
5\theta - 20^{\circ}= 90^{\circ} + 360^{\circ} k.
\]
Solving for \(\theta\):
\[
5\theta = 110^{\circ} + 360^{\circ} k,
\]
\[
\theta = 22^{\circ} + 72^{\circ} k.
\]
We must choose integers \(k\) so that \(\theta\) lies in \([-180^{\circ}, 180^{\circ}]\):
• For \(k = -2\): \(\theta = 22 - 144 = -122^{\circ}\).
• For \(k = -1\): \(\theta = 22 - 72 = -50^{\circ}\).
• For \(k = 0\): \(\theta = 22^{\circ}\).
• For \(k = 1\): \(\theta = 22 + 72 = 94^{\circ}\).
• For \(k = 2\): \(\theta = 22 + 144 = 166^{\circ}\).
Checking \(k = -3\) gives \(-194^{\circ}\) (which is less than \(-180^{\circ}\)) and \(k = 3\) gives \(238^{\circ}\) (which is larger than \(180^{\circ}\)).
Thus, the solutions are
\[
\theta = -122^{\circ},\quad -50^{\circ},\quad 22^{\circ},\quad 94^{\circ},\quad 166^{\circ}.
\]
---
### 2(b)
We now need to find \(\theta \in [-180^{\circ}, 180^{\circ}]\) such that
\[
2 \cos 3\theta \cdot \cos 30^{\circ} - 2 \sin 3\theta \cdot \sin 30^{\circ} = 1.
\]
Factor out the 2:
\[
2 \left(\cos 3\theta \cdot \cos 30^{\circ} - \sin 3\theta \cdot \sin 30^{\circ}\right) = 1.
\]
Recall that
\[
\cos 3\theta \cos 30^{\circ} - \sin 3\theta \sin 30^{\circ} = \cos(3\theta + 30^{\circ}).
\]
Thus, the equation becomes
\[
2 \cos(3\theta + 30^{\circ}) = 1,
\]
or
\[
\cos(3\theta + 30^{\circ}) = \frac{1}{2}.
\]
Since \(\cos \alpha = \frac{1}{2}\) when
\[
\alpha = 60^{\circ} + 360^{\circ} k \quad \text{or} \quad \alpha = 300^{\circ} + 360^{\circ} k,\quad k\in\mathbb{Z},
\]
we set
1. \(3\theta + 30^{\circ} = 60^{\circ} + 360^{\circ} k\):
\[
3\theta = 30^{\circ} + 360^{\circ} k,\quad \theta = 10^{\circ} + 120^{\circ} k.
\]
2. \(3\theta + 30^{\circ} = 300^{\circ} + 360^{\circ} k\):
\[
3\theta = 270^{\circ} + 360^{\circ} k,\quad \theta = 90^{\circ} + 120^{\circ} k.
\]
Now choose the values such that \(\theta \in [-180^{\circ}, 180^{\circ}]\).
For \(\theta =
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg



¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium