Multiple Cholce Questlon A rotor has a weight of 100 lb with a centroidal radius of gyration of 9 in . Determine the moment of inertia about the center of gravity for the rotor. O \( 56.25 \mathrm{lb} \mathrm{ft} \cdot \mathrm{s}^{2} \) \( 1.747 \mathrm{lb} \mathrm{ft} \cdot \mathrm{s}^{2} \) O \( 5.734 \mathrm{lb} \mathrm{ft} \cdot \mathrm{s}^{2} \) O \( 2.0963 \mathrm{lb} \mathrm{ft} \cdot \mathrm{s}^{2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To determine the moment of inertia (I) about the center of gravity for the rotor, we can use the formula: \[ I = W \cdot k^2 \] where \( W \) is the weight and \( k \) is the radius of gyration. Given \( W = 100 \, \text{lb} \) and \( k = 9 \, \text{in} = 0.75 \, \text{ft} \) (since there are 12 inches in a foot), we can substitute the values into the formula: \[ I = 100 \, \text{lb} \cdot (0.75 \, \text{ft})^2 = 100 \cdot 0.5625 \] Calculating this gives: \[ I = 56.25 \, \text{lb} \cdot \text{ft}^2 \] Thus, the correct answer is \( 56.25 \, \text{lb} \cdot \text{ft}^2 \). To ensure your calculations are always spot on, double-check your unit conversions. It’s easy to miss switching from inches to feet or from pounds to a different unit. A quick method is to always write the base units clearly before plugging them into formulas—this can save you from a “unit mix-up” trap!
