Pregunta
upstudy study bank question image url

\( 1 \leftarrow \quad \) Identify the vertex, axis of symmetry, \( y \)-intercept, \( x \)-intercepts, and opening of the parabola, then sketch the graph.

Ask by Ball Harris. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Vertex**: (1, 0) - **Axis of Symmetry**: x = 1 - **y-intercept**: (0, 1) - **x-intercept**: (1, 0) - **Opening**: Upward [Graph Sketch]: - Vertex at (1, 0) - Axis of symmetry at x = 1 - y-intercept at (0, 1) - x-intercept at (1, 0) - Parabola opens upward This parabola touches the x-axis only at the vertex (1, 0) and has its lowest point at the vertex.

Solución

We start with the quadratic in standard form:   y = x² – 2x + 1 Step 1. Identify the vertex.  The vertex of a quadratic y = ax² + bx + c is found using the formula for the x-coordinate:   x = –b/(2a) For this equation, a = 1 and b = –2, so:   x = –(–2)/(2·1) = 2/2 = 1 Now substitute x = 1 back into the equation:   y = (1)² – 2(1) + 1 = 1 – 2 + 1 = 0 Thus, the vertex is (1, 0). Step 2. Find the axis of symmetry.  The axis of symmetry is the vertical line that passes through the vertex. Therefore:   Axis of symmetry: x = 1 Step 3. Find the y-intercept.  The y-intercept is found by setting x = 0:   y = (0)² – 2(0) + 1 = 1 So, the y-intercept is at (0, 1). Step 4. Find the x-intercepts.  The x-intercepts are found by setting y = 0:   0 = x² – 2x + 1   0 = (x – 1)² This gives a double root:   x – 1 = 0 ⟹ x = 1 Thus, the only x-intercept is at (1, 0). Step 5. Determine the direction of opening.  Since the coefficient a = 1 is positive, the parabola opens upward. Step 6. Sketch the graph. 1. Plot the vertex at (1, 0). 2. Draw the axis of symmetry, the vertical line x = 1. 3. Mark the y-intercept, (0, 1). By symmetry, there will be a corresponding point on the opposite side of the axis: (2, 1). 4. Note that the parabola touches the x-axis only at (1, 0). 5. Draw a smooth curve opening upward that passes through these points. Below is a rough sketch: ↑ 2 | • (2,1) 1 | • (0,1) | | 0 |--------•--------→ | (1,0) (vertex and x-intercept) -1 | | +---------------------------→ 0 1 2 3 Summary:  • Vertex: (1, 0)  • Axis of symmetry: x = 1  • y-intercept: (0, 1)  • x-intercept: (1, 0) (double root)  • Opening: Upward This completes the identification and sketch of the graph of y = x² – 2x + 1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The vertex of a parabola can be identified using the formula \( x = -\frac{b}{2a} \) from the vertex form of a quadratic equation \( ax^2 + bx + c \). The axis of symmetry will be the line \( x = -\frac{b}{2a} \). The \( y \)-intercept is found by evaluating the equation at \( x = 0 \) (where it crosses the \( y \)-axis), and the \( x \)-intercepts can be found by solving \( ax^2 + bx + c = 0 \) using the quadratic formula. If \( a > 0 \), the parabola opens upwards, and if \( a < 0 \), it opens downwards. For a sketch, make sure to plot the vertex, axis of symmetry, \( y \)-intercept, and any \( x \)-intercepts on a coordinate grid, then draw the symmetrical curve of the parabola around the axis of symmetry. A smooth U or upside-down U shape will represent the parabola depending on its opening direction!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad