Pregunta
upstudy study bank question image url

What is the GCF of 54 and \( 32 ? \)

Ask by Carrillo Bowman. in the United States
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The GCF of 54 and 32 is 2.

Solución

To find the **Greatest Common Factor (GCF)** of 54 and 32, we can use the **Euclidean algorithm**, which is an efficient method for computing the GCF of two numbers. ### Step-by-Step Using the Euclidean Algorithm: 1. **Divide the larger number by the smaller number:** \[ 54 \div 32 = 1 \text{ with a remainder of } 22 \] So, \( 54 = 32 \times 1 + 22 \). 2. **Replace the larger number with the smaller number, and the smaller number with the remainder:** - Now, find the GCF of 32 and 22. 3. **Repeat the process:** \[ 32 \div 22 = 1 \text{ with a remainder of } 10 \] So, \( 32 = 22 \times 1 + 10 \). 4. **Continue:** \[ 22 \div 10 = 2 \text{ with a remainder of } 2 \] So, \( 22 = 10 \times 2 + 2 \). 5. **One more step:** \[ 10 \div 2 = 5 \text{ with a remainder of } 0 \] Since the remainder is now 0, the last non-zero remainder (**2**) is the GCF. ### Conclusion: The **GCF of 54 and 32 is 2**. **Answer:** The greatest common factor of 54 and 32 is 2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the GCF (Greatest Common Factor) of 54 and 32, we first need to list the factors of both numbers. The factors of 54 are 1, 2, 3, 6, 9, 18, 27, and 54, while the factors of 32 are 1, 2, 4, 8, 16, and 32. The greatest number that appears in both lists is 2. Thus, the GCF of 54 and 32 is 2. If you want to break down the numbers even further, you can use the prime factorization method. For 54, the prime factorization is \(2 \times 3^3\), and for 32, it’s \(2^5\). The GCF can then be determined by taking the lowest powers of the common prime factors, which again gives you \(2^{1} = 2\). So, math magic strikes again in revealing that 2 is indeed the GCF!

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad