Pregunta
upstudy study bank question image url

41 If it is given that \[ \sin 30^{\circ}=\frac{1}{2} \text { Cos } 30^{\prime}=\frac{4}{2} \] Use your knowedge of trigonometry to determine the foltowing Peter stands at C with his Kite. The string of the kite is 20 m long How high is the kite above the ground? (Determine the length of AB .)

Ask by Zimmerman Cruz. in South Africa
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The kite is 10 meters above the ground.

Solución

To solve the problem, we need to determine the height of the kite above the ground, which can be represented as the vertical distance from point A (the kite) to point B (the ground). Given: - The length of the string (AC) is 20 m. - The angle at point C (the angle between the string and the horizontal ground) is \(30^{\circ}\). We can use the sine function to find the height (AB) of the kite above the ground. The sine of an angle in a right triangle is defined as the ratio of the length of the opposite side to the hypotenuse. ### Step 1: Identify the relationship In triangle ABC: - \(AB\) is the height of the kite above the ground. - \(AC\) is the length of the string (hypotenuse). - The angle \(C\) is \(30^{\circ}\). Using the sine function: \[ \sin(C) = \frac{AB}{AC} \] ### Step 2: Substitute known values Substituting the known values into the equation: \[ \sin(30^{\circ}) = \frac{AB}{20} \] ### Step 3: Calculate \(AB\) We know that: \[ \sin(30^{\circ}) = \frac{1}{2} \] So we can substitute this value into the equation: \[ \frac{1}{2} = \frac{AB}{20} \] ### Step 4: Solve for \(AB\) To find \(AB\), we can rearrange the equation: \[ AB = 20 \cdot \frac{1}{2} \] \[ AB = 10 \] ### Conclusion The height of the kite above the ground is \(10\) m.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how high the kite is above the ground, we can use some basic trigonometry. If we assume that the string forms a right triangle where C is the point where Peter is standing, A is the point directly below the kite (on the ground), and B is the kite's position in the air, we can apply the sine function. Let’s take angle \( \theta \) be the angle between the string and the ground. The height of the kite (AB) can be found using the sine function: \[ \sin(\theta) = \frac{AB}{AC} \] Given that AC (the length of the string) is 20 m, we express AB as: \[ AB = AC \times \sin(\theta) = 20 \times \sin(\theta) \] To determine the height, we need the sine of the angle \( \theta \), which is not provided. However, this structure allows you to plug in the needed angle to ultimately calculate \( AB \). Now, if you take the angle (for instance, let’s say if the kite is 30 degrees high), \[ \sin(30°) = \frac{1}{2} \Rightarrow AB = 20 \times \frac{1}{2} = 10 \text{ m} \] Thus, at 30 degrees, the height of the kite is 10 m! Just remember to substitute the correct angle to find the exact height.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad