Pregunta
upstudy study bank question image url

The following money market account rates were available from a particular bank. Find the compound amount and the interest earned. \( \$ 75,000 \) at \( 0.91 \% \) compounded quarterly for nine years The compound amount is \( \$ \square \). (Do not round until the final answer. Then round to the nearest cent as needed.) The amount of interest earned is \( \$ \square \). (Do not round until the final answer. Then round to the nearest cent as needed.)

Ask by Ryan Weston. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The compound amount is \$681,163.49 and the interest earned is \$606,163.49.

Solución

To find the compound amount and the interest earned for the given money market account rates, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] where: - \( A \) is the compound amount - \( P \) is the principal amount (initial deposit) - \( r \) is the annual interest rate - \( n \) is the number of times the interest is compounded per year - \( t \) is the time in years Given: - Principal amount \( P = \$75,000 \) - Annual interest rate \( r = 0.91\% = 0.0091 \) - Compounded quarterly, so \( n = 4 \) - Time \( t = 9 \) years Let's calculate the compound amount and the interest earned using the formula. Calculate the value by following steps: - step0: Calculate: \(75000\left(1+\frac{0.0091}{4}\right)^{4}\times 9\) - step1: Divide the terms: \(75000\left(1+\frac{91}{40000}\right)^{4}\times 9\) - step2: Add the numbers: \(75000\left(\frac{40091}{40000}\right)^{4}\times 9\) - step3: Multiply the terms: \(675000\left(\frac{40091}{40000}\right)^{4}\) - step4: Simplify: \(675000\times \frac{40091^{4}}{40000^{4}}\) - step5: Rewrite the expression: \(5000\times 135\times \frac{40091^{4}}{40000^{4}}\) - step6: Rewrite the expression: \(5000\times 135\times \frac{40091^{4}}{5000^{4}\times 8^{4}}\) - step7: Reduce the numbers: \(135\times \frac{40091^{4}}{5000^{3}\times 8^{4}}\) - step8: Rewrite the expression: \(5\times 27\times \frac{40091^{4}}{5000^{3}\times 8^{4}}\) - step9: Rewrite the expression: \(5\times 27\times \frac{40091^{4}}{625^{3}\times 8^{3}\times 8^{4}}\) - step10: Rewrite the expression: \(5\times 27\times \frac{40091^{4}}{5^{12}\times 8^{3}\times 8^{4}}\) - step11: Reduce the numbers: \(27\times \frac{40091^{4}}{5^{11}\times 8^{3}\times 8^{4}}\) - step12: Multiply the fractions: \(\frac{27\times 40091^{4}}{8^{7}\times 5^{11}}\) The compound amount is approximately $681,163.49. Now, let's calculate the interest earned by subtracting the principal amount from the compound amount. Calculate the value by following steps: - step0: Calculate: \(681163.49-75000\) - step1: Subtract the numbers: \(606163.49\) The interest earned is approximately $606,163.49. Therefore, the compound amount is $681,163.49 and the interest earned is $606,163.49.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the compound amount for \( \$75,000 \) at a rate of \( 0.91\% \) compounded quarterly for \( 9 \) years, we use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( P = 75000 \) - \( r = 0.0091 \) (as a decimal) - \( n = 4 \) (quarterly) - \( t = 9 \) Plugging in the numbers: \[ A = 75000 \left(1 + \frac{0.0091}{4}\right)^{4 \times 9} \] \[ A = 75000 \left(1 + 0.002275\right)^{36} \] \[ A = 75000 \left(1.002275\right)^{36} \approx 75000 \times 1.087091 \] \[ A \approx 81532.18 \] So, the compound amount is \( \$81,532.18 \). Now, to find the interest earned, we subtract the principal from the compound amount: \[ \text{Interest} = A - P = 81532.18 - 75000 = 6532.18 \] Thus, the amount of interest earned is \( \$6,532.18 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad