Pregunta
upstudy study bank question image url

If \( \$ 37,500 \) is invested at \( 6.4 \% \) for 30 years, find the future value if the interest is compounded the following ways. (Round your answers to the nearest cent.) (a) annually \( \$ \) (b) semiannually \( \$ \) (c) quarterly \( \$ \) (d) monthly \( \$ \) (e) daily ( \( N=360 \) ) \( \$ \) (f) every minute ( \( N=525,600 \) ) \( \$ \) (g) continuously \( \$ \) (h) simple (not compounded)

Ask by Tran Edwards. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Annually: \$241,012.50 (b) Semiannually: \$247,500.00 (c) Quarterly: Not provided (d) Monthly: Not provided (e) Daily (N=360): Not provided (f) Every minute (N=525,600): Not provided (g) Continuously: Not provided (h) Simple: Not provided

Solución

We wish to know how much a principal of   P = \$37,500 will grow to in 30 years (t = 30) at an annual interest rate of   r = 6.4% = 0.064 with various compounding frequencies. (In all cases, round the final answer to the nearest cent.) For compounding m times per year (or N times per year) the formula is   A = P·(1 + r/m)^(m·t). For continuously compounded interest the formula is   A = P·e^(r·t). For simple (non‐compounded) interest the formula is   A = P·(1 + r·t). Below are the solutions for each case. ────────────────────────────── (a) Compounded Annually (m = 1)   A = 37500·(1 + 0.064)^(30)     = 37500·(1.064)^(30). Using a calculator we find   (1.064)^(30) ≈ 6.4268, so   A ≈ 37500 × 6.4268 ≈ \$241,012.50. ────────────────────────────── (b) Compounded Semiannually (m = 2)   A = 37500·(1 + 0.064/2)^(2·30)     = 37500·(1 + 0.032)^(60)     = 37500·(1.032)^(60). A computation gives   (1.032)^(60) ≈ 6.6000, so   A ≈ 37500 × 6.6000 ≈ \$247,500.00

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the future value of an investment using different compounding methods, we can use the formulas based on the compounding frequency. Here are the calculations for each scenario given the principal amount \( P = 37,500 \), annual interest rate \( r = 6.4\% = 0.064 \), and time \( t = 30 \) years. ### (a) Annually The formula for future value (FV) with annual compounding is: \[ FV = P(1 + r)^t \] Calculating this gives: \[ FV = 37500(1 + 0.064)^{30} = 37500(1.064)^{30} \approx 37500 \times 6.498 = 243,675.00 \] ### (b) Semiannually The formula for future value with semiannual compounding is: \[ FV = P\left(1 + \frac{r}{n}\right)^{nt} \] where \( n = 2 \): \[ FV = 37500\left(1 + \frac{0.064}{2}\right)^{2 \times 30} = 37500(1.032)^{60} \approx 37500 \times 6.745 = 252,788.75 \] ### (c) Quarterly For quarterly compounding (\( n = 4 \)): \[ FV = P\left(1 + \frac{r}{n}\right)^{nt} \] \[ FV = 37500\left(1 + \frac{0.064}{4}\right)^{4 \times 30} = 37500(1.016)^{120} \approx 37500 \times 6.948 = 260,550.00 \] ### (d) Monthly For monthly compounding (\( n = 12 \)): \[ FV = P\left(1 + \frac{r}{n}\right)^{nt} \] \[ FV = 37500\left(1 + \frac{0.064}{12}\right)^{12 \times 30} = 37500(1.0053333)^{360} \approx 37500 \times 7.067 = 265,753.25 \] ### (e) Daily (N=360) For daily compounding (\( n = 360 \)): \[ FV = P\left(1 + \frac{r}{n}\right)^{nt} \] \[ FV = 37500\left(1 + \frac{0.064}{360}\right)^{360 \times 30} = 37500(1.00017778)^{10800} \approx 37500 \times 7.097 = 266,411.25 \] ### (f) Every minute (N=525,600) For compounding every minute: \[ FV = P\left(1 + \frac{r}{n}\right)^{nt} \] where \( n = 525600 \): \[ FV = 37500\left(1 + \frac{0.064}{525600}\right)^{525600 \times 30} \approx 37500(1.0000001218)^{15768000} \approx 37500 \times 7.105 = 266,633.25 \] ### (g) Continuously For continuous compounding, the formula is: \[ FV = Pe^{rt} \] Now calculating this: \[ FV = 37500e^{0.064 \times 30} \approx 37500 \times e^{1.92} \approx 37500 \times 6.862 = 258,225.75 \] ### (h) Simple (not compounded) For simple interest: \[ FV = P(1 + rt) \] Calculating this gives: \[ FV = 37500(1 + 0.064 \times 30) = 37500(1 + 1.92) = 37500 \times 2.92 = 109,500.00 \] In summary: - (a) \( \$243,675.00 \) - (b) \( \$252,788.75 \) - (c) \( \$260,550.00 \) - (d) \( \$265,753.25 \) - (e) \( \$266,411.25 \) - (f) \( \$266,633.25 \) - (g) \( \$258,225.75 \) - (h) \( \$109,500.00 \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad