(c) If \( 5 \cos \mathrm{~A}+3=0 \) and \( 180^{\circ}<\mathrm{A}<360^{\circ} \), determine by means of a diagram: \( \begin{array}{ll}\text { (1) } \tan ^{2} \mathrm{~A} & \text { (2) } \frac{\sin \mathrm{A}}{\cos \mathrm{A}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the equation \( 5 \cos A + 3 = 0 \), we first isolate \( \cos A \). Rearranging gives us \( \cos A = -\frac{3}{5} \). Since \( A \) is in the interval \( 180^\circ < A < 360^\circ \), \( A \) is in the third or fourth quadrant, where cosine is negative. Next, we can find \( \sin A \) using the identity \( \sin^2 A + \cos^2 A = 1 \): \[ \sin^2 A = 1 - \cos^2 A = 1 - \left(-\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \( \sin A = -\frac{4}{5} \) (negative since \( A \) is in the fourth quadrant). Now we can calculate: 1. \(\tan^2 A = \left(\frac{\sin A}{\cos A}\right)^2 = \left(\frac{-\frac{4}{5}}{-\frac{3}{5}}\right)^2 = \left(\frac{4}{3}\right)^2 = \frac{16}{9}\). 2. \(\frac{\sin A}{\cos A} = \frac{-\frac{4}{5}}{-\frac{3}{5}} = \frac{4}{3}\). Thus, your answers are: 1. \( \tan^2 A = \frac{16}{9} \) 2. \( \frac{\sin A}{\cos A} = \frac{4}{3} \)
