Pregunta
upstudy study bank question image url

II \( \$ 15000 \) is invested at \( 12 \% \) interest compounded monthly, fond the interest earned in 15 years The interest eamed in 15 years is \( 3 \square \) (Do not round until the linat answer Then round to two decinal places as needed)

Ask by Gough Fowler. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The interest earned in 15 years is \( 76740 \).

Solución

To calculate the interest earned on an investment compounded monthly, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed. Given: - \( P = 15000 \) - \( r = 0.12 \) (12% as a decimal) - \( n = 12 \) (compounded monthly) - \( t = 15 \) Now, we can plug in the values: \[ A = 15000 \left(1 + \frac{0.12}{12}\right)^{12 \times 15} \] Calculating the values step by step: 1. Calculate \( \frac{r}{n} \): \[ \frac{0.12}{12} = 0.01 \] 2. Calculate \( nt \): \[ 12 \times 15 = 180 \] 3. Now substitute these values back into the formula: \[ A = 15000 \left(1 + 0.01\right)^{180} \] 4. Calculate \( (1 + 0.01)^{180} \): \[ (1.01)^{180} \approx 6.116 \] 5. Now calculate \( A \): \[ A \approx 15000 \times 6.116 \approx 91740 \] 6. Finally, to find the interest earned, subtract the principal from the total amount: \[ \text{Interest} = A - P = 91740 - 15000 = 76740 \] Thus, the interest earned in 15 years is approximately: \[ \text{Interest} \approx 76740 \] So, the interest earned in 15 years is \( 76740 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the interest earned in 15 years, we'll use the formula for compound interest, which is given by: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( P = 15000 \) - \( r = 0.12 \) - \( n = 12 \) (monthly compounding) - \( t = 15 \) Plugging in the values: \[ A = 15000 \left(1 + \frac{0.12}{12}\right)^{12 \times 15} \] \[ A = 15000 \left(1 + 0.01\right)^{180} \] \[ A = 15000 \left(1.01\right)^{180} \] Using a calculator for \( (1.01)^{180} \): \[ A \approx 15000 \times 6.2288 \approx 93432.04 \] Now, to find the interest earned: \[ \text{Interest} = A - P = 93432.04 - 15000 = 78432.04 \] Thus, the interest earned in 15 years is approximately \( \boxed{78432.04} \).

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad