Pregunta
upstudy study bank question image url

A mass hanging from a spring is set in motion and its ensuing velocity is given by for . Assume that the positive
direction is upward and .
a. Determine the position function for .
b. Graph the position function on the interval .
c. At what times does the mass reach its lowest point the first three times?
d. At what times does the mass reach its highest point the first three times?

Ask by Patel Wood. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. Position Function:
The position function is .
b. Graphing the Position Function:
The graph is a cosine wave with an amplitude of 5 and a period of 2. It oscillates between 5 (highest point) and -5 (lowest point), with peaks at and , and troughs at and .
c. Times Reaching Lowest Point:
The mass reaches its lowest point at , , and .
d. Times Reaching Highest Point:
The mass reaches its highest point at , , and .

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To find the position function, we will need to integrate the velocity function .

a. Determine the position function for .

We start by integrating the velocity function:
The integral of is , so we have:
To find the constant , we use the initial condition :
Thus, the position function is:

b. Graph the position function on the interval .

To graph over the interval , observe that the function oscillates between and . The first peak occurs at and the first trough (lowest point) occurs at , completing a full oscillation by . Therefore, the graph exhibits a sinusoidal pattern with the function reaching its maximum at and minimum at .

c. At what times does the mass reach its lowest point the first three times?

The mass reaches its lowest point (minimum) when . This occurs when:
The cosine function equals at:
Thus,
Calculating the first three values:
  • For :
  • For :
  • For :
The first three times the mass reaches its lowest point are .

d. At what times does the mass reach its highest point the first three times?

The mass reaches its highest point (maximum) when . This occurs when:
The cosine function equals at:
Thus,
Calculating the first three values:
  • For :
  • For :
  • For :
The first three times the mass reaches its highest point are .

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad