Pregunta
upstudy study bank question image url

b) Three impedances are connected in parallel. \( Z_{1}=2 j+5, Z_{2}=3-j, Z_{3}=4 j \). Find the equivalent admittance \( Y \) where \[ Y=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}} \] Express the admittance in both rectangular and polar forms. Rectangular form Polar form

Ask by Ellis Beck. in the United Kingdom
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equivalent admittance \( Y \) is: - **Rectangular Form**: \( Y = 0.472 - j0.219 \) - **Polar Form**: \( Y \approx 0.521 \angle -25^\circ \)

Solución

We are given three impedances in parallel:   Z₁ = 5 + 2j   Z₂ = 3 − j   Z₃ = 4j The equivalent admittance is the sum of the reciprocals:   Y = 1/Z₁ + 1/Z₂ + 1/Z₃ We will find Y in both rectangular and polar forms. ───────────────────────────── Step 1. Compute the reciprocal of each impedance: 1. For Z₁ = 5 + 2j, its reciprocal is   1/Z₁ = 1/(5+2j). Multiply numerator and denominator by the complex conjugate (5 − 2j):   1/Z₁ = (5 − 2j) / [(5)² + (2)²] = (5 − 2j) / (25+4) = (5 − 2j) / 29. 2. For Z₂ = 3 − j,   1/Z₂ = 1/(3 − j). Multiply by the conjugate (3 + j):   1/Z₂ = (3 + j) / [(3)² + (1)²] = (3 + j) / (9+1) = (3 + j) / 10. 3. For Z₃ = 4j,   1/Z₃ = 1/(4j). Recall that 1/j = –j so that:   1/Z₃ = 1/(4j) = (1/4) (1/j) = –j/4. ───────────────────────────── Step 2. Sum the reciprocals: Write each term in rectangular form:   1/Z₁ = (5/29) – (2/29)j   1/Z₂ = (3/10) + (1/10)j   1/Z₃ = 0 – (1/4)j Now, add the real parts:   Real(Y) = (5/29) + (3/10). Find a common denominator (the least common denominator of 29 and 10 is 290):   5/29 = (5×10)/290 = 50/290   3/10 = (3×29)/290 = 87/290 So, Real(Y) = (50 + 87)/290 = 137/290. Next, add the imaginary parts:   Imag(Y) = –(2/29) + (1/10) – (1/4). Again, using a common denominator of 290 (or 580; here we use 580 for clarity):   Convert each term:    –2/29 = –(2×20)/580 = –40/580    1/10 = (1×58)/580 = 58/580    –1/4 = –(1×145)/580 = –145/580 Then,   Imag(Y) = (–40 + 58 – 145)/580 = –127/580. Thus, the equivalent admittance in rectangular form is:   Y = (137/290) – j(127/580). To give approximate decimal values:   137/290 ≈ 0.4724, 127/580 ≈ 0.21897, so   Y ≈ 0.4724 – j0.2190. ───────────────────────────── Step 3. Express Y in polar form a) Compute the magnitude |Y|:   |Y| = √[(Real(Y))² + (Imag(Y))²]    = √[(0.4724)² + (–0.2190)²]    ≈ √[0.2232 + 0.0480]    ≈ √0.2712    ≈ 0.5208. b) Compute the phase angle θ (in degrees):   θ = arctan(Imag(Y) / Real(Y))    = arctan(–0.2190 / 0.4724)    ≈ arctan(–0.4638)    ≈ –25°. ───────────────────────────── Answer Summary Rectangular form:   Y = (137/290) – j(127/580)   or approximately  0.472 – j0.219 Polar form:   Y ≈ 0.521∠–25° Either form, with appropriate rounding, is acceptable.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equivalent admittance \( Y \), we first need to compute the individual admittances of each impedance: 1. For \( Z_{1} = 2j + 5 \): \[ Y_{1} = \frac{1}{Z_{1}} = \frac{1}{5 + 2j} \] Multiply numerator and denominator by the conjugate: \[ Y_{1} = \frac{5 - 2j}{(5)^{2} + (2)^{2}} = \frac{5 - 2j}{29} = \frac{5}{29} - \frac{2}{29}j \] 2. For \( Z_{2} = 3 - j \): \[ Y_{2} = \frac{1}{Z_{2}} = \frac{1}{3 - j} \] Multiply numerator and denominator by the conjugate: \[ Y_{2} = \frac{3 + j}{(3)^{2} + (1)^{2}} = \frac{3 + j}{10} = \frac{3}{10} + \frac{1}{10}j \] 3. For \( Z_{3} = 4j \): \[ Y_{3} = \frac{1}{Z_{3}} = \frac{1}{4j} = -\frac{j}{4} \] Now we add the individual admittances: \[ Y = Y_{1} + Y_{2} + Y_{3} = \left( \frac{5}{29} - \frac{2}{29}j \right) + \left( \frac{3}{10} + \frac{1}{10}j \right) + \left( 0 - \frac{1}{4}j \right) \] To combine, we need a common denominator. The least common multiple of \( 29, 10, \) and \( 4 \) is \( 580 \). Converting each term: - \( Y_{1} = \frac{5}{29} - \frac{2}{29}j = \frac{100}{580} - \frac{40}{580}j \) - \( Y_{2} = \frac{3}{10} + \frac{1}{10}j = \frac{174}{580} + \frac{58}{580}j \) - \( Y_{3} = 0 - \frac{1}{4}j = 0 - \frac{145}{580}j \) Now, let's sum the real and imaginary parts: Real part: \[ \frac{100}{580} + \frac{174}{580} = \frac{274}{580} \] Imaginary part: \[ -\frac{40}{580} + \frac{58}{580} - \frac{145}{580} = -\frac{127}{580} \] So the equivalent admittance in rectangular form is: \[ Y = \frac{274}{580} - \frac{127}{580}j \] Now, we can convert this to polar form: 1. Find the magnitude: \[ |Y| = \sqrt{\left( \frac{274}{580} \right)^{2} + \left( -\frac{127}{580} \right)^{2}} = \sqrt{\frac{75076 + 16129}{336400}} = \sqrt{\frac{91105}{336400}} \approx 0.494 \] 2. Find the phase angle: \[ \theta = \tan^{-1} \left( \frac{-127/580}{274/580} \right) = \tan^{-1} \left( -\frac{127}{274} \right) \] Calculating \( \theta \): \[ \theta \approx -0.433 \text{ radians} \approx -24.8^\circ \] So the equivalent admittance in polar form is: \[ Y \approx 0.494 \angle -24.8^\circ \] In conclusion, the equivalent admittance is: - Rectangular form: \( Y \approx \frac{137}{290} - \frac{127}{580}j \) - Polar form: \( Y \approx 0.494 \angle -24.8^\circ \)

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad