Pregunta
Given that
and
, where
and
are
integers. Find the minimum value of
.
integers. Find the minimum value of
Ask by Boone Boone. in Malaysia
Mar 13,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The minimum value of
is
.
Solución
Step 1. Determine the range for
:
We are given
Since
is an integer, the possible values of
are
Step 2. Solve the inequality for
:
We are given
Subtract
from both sides:
Multiply both sides by
(remember to reverse the inequality):
Since
is an integer, the smallest possible value for
is
(because
must be greater than
). Hence,
Step 3. Minimize
:
We want the minimum value of the product
. Notice that:
-
is positive. -
can be negative, and multiplying a positive number by a negative number gives a negative product.
To make
as small (i.e., as negative) as possible, we choose:
- The largest possible
(to maximize the magnitude). - The smallest possible
(the most negative, in this case ).
The largest value of
from the set is
, and the smallest value of
is
.
Thus,
Answer: The minimum value of
is
.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To solve the problem, we start by examining the conditions given for
and
.
-
The first condition is
. Since must be an integer, this means that can take the values: -
The second condition is
. Rearranging this, we have: Sincemust also be an integer, can take the values:
Next, we will calculate
for the integer values of
and
that we have identified, to find the minimum product.
We will take combinations of
and valid
values and compute
:
-
For
: -
: -
: -
: -
:
-
-
For
: -
: -
: -
: -
:
-
-
For
: -
: -
: -
: -
:
-
-
For
: -
: -
: -
: -
:
-
-
For
: -
: -
: -
: -
:
-
-
For
: -
: -
: -
: -
:
-
-
For
: -
: -
: -
: -
:
-
-
For
: -
: -
: -
: -
:
-
-
For
: - (
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium