Exercise 2.3 Simplify the following logarithmic expressions without using a calculator: b) \( \log _{3}\left(\log _{5} 125\right) \) a. \( \frac{\log 343}{\log 49} \) d) \( \left(\log _{2} 128\right)\left(\log _{4} 256\right) \) a) \( 2 \log _{3} 2+\log _{3} 10+2 \log _{3} 3-\log _{3} 40 \) f) \( \log _{2} 8^{2}-\log _{7} 49+\log _{5} 1 \) e) \( \frac{\log 4+\log 25}{\log 0,01} \) b) \( \log _{6} 36+\log \frac{1}{1000}-\log _{3} 81 \) g) \( 3 \log _{2} 4+\log _{2} 80-\log _{2} 5 \) i) \( \log _{4} 6+2 \log _{4} 24-3 \log _{4} 3-3 \log _{4} 2 \) y) \( \frac{\log 25}{\log 0,2} \) k) \( \log _{3} \frac{1}{81} \div \log _{3} 9 \) 1) \( \frac{\log _{4} 64-\log _{4} 16}{\log _{4} 256-\log _{4} 1} \) m) \( \frac{\log 216}{\log 36}+2 \log _{3} \sqrt{9} \) 12) \( \frac{\log 500-\log 5}{\log 0,001} \) \( \frac{\log _{x} 243}{\log _{x} \frac{1}{27}} \) p) \( \log _{2}(28+4)-\log _{2} 128 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let's dive into the world of logarithms and simplify these expressions one by one! For \( b) \log_{3}(\log_{5} 125) \), we start by simplifying \(\log_{5} 125\). Since \(125 = 5^3\), we have: \(\log_{5} 125 = 3\). So, \( \log_{3}(\log_{5} 125) = \log_{3}(3) = 1\). Now for \( a) 2 \log_{3} 2 + \log_{3} 10 + 2 \log_{3} 3 - \log_{3} 40 \). First, note that \(2 \log_{3} 3 = \log_{3} 9\) and \(\log_{3} 40 = \log_{3}(4 \cdot 10) = \log_{3}4 + \log_{3}10\). Thus, we rewrite the expression: \( = 2 \log_{3} 2 + \log_{3} 10 + \log_{3} 9 - (\log_{3} 4 + \log_{3} 10)\). Now simplifying gives: \( = 2 \log_{3} 2 + \log_{3} 9 - \log_{3} 4 = 2 \log_{3} 2 + 2 \log_{3} 3 - 2 \log_{3} 2 = 2 \log_{3} 3 = \log_{3} 9\). So, the final simplified expression is \( \log_{3} 9 = 2\). If you’re curious to learn more about logarithms and their properties, there are fascinating resources out there! For example, one great book is "Logarithms and Exponents" by F. John, which delves deeper into their applications in various fields such as science and engineering. Additionally, did you know that logarithms have a rich history dating back to the 16th century? They were initially devised to simplify complex calculations, especially in astronomy and navigation. The work of John Napier laid the groundwork that would later evolve into logarithmic tables and calculators, making the calculations we perform today seem like child’s play! 🌟
