Pregunta
upstudy study bank question image url

3. The yearly profits of a company is \( \$ 25,000 \). The profits have been decreasing by \( 6 \% \) per year. Write an exponential decay function to represent this \( \begin{array}{ll}\text { uation. } & \text { B. What will be the profits in } 8 \text { years? Round } \\ \text { answer to the nearest dollar. }\end{array} \)

Ask by Lowe Salinas. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The exponential decay function is \( P(t) = 25000 \times (0.94)^t \). In 8 years, the profits will be approximately $15,239.

Solución

To represent the yearly profits of a company that is decreasing by 6% per year, we can use an exponential decay function. The general form of an exponential decay function is: \[ P(t) = P_0 \times (1 - r)^t \] where: - \( P(t) \) is the profit at time \( t \), - \( P_0 \) is the initial profit, - \( r \) is the rate of decay (in this case, 6% or 0.06), - \( t \) is the time in years. Given that the yearly profits of the company is $25,000 and the profits have been decreasing by 6% per year, we can substitute these values into the function: \[ P(t) = 25000 \times (1 - 0.06)^t \] Now, we need to find the profits in 8 years. We can substitute \( t = 8 \) into the function to calculate the profits at that time: \[ P(8) = 25000 \times (1 - 0.06)^8 \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(25000\left(1-0.06\right)^{8}\) - step1: Subtract the numbers: \(25000\times 0.94^{8}\) - step2: Convert the expressions: \(25000\left(\frac{47}{50}\right)^{8}\) - step3: Simplify: \(25000\times \frac{47^{8}}{50^{8}}\) - step4: Rewrite the expression: \(2500\times 10\times \frac{47^{8}}{50^{8}}\) - step5: Rewrite the expression: \(50^{2}\times 10\times \frac{47^{8}}{50^{8}}\) - step6: Reduce the numbers: \(10\times \frac{47^{8}}{50^{6}}\) - step7: Rewrite the expression: \(10\times \frac{47^{8}}{10^{6}\times 5^{6}}\) - step8: Reduce the numbers: \(1\times \frac{47^{8}}{10^{5}\times 5^{6}}\) - step9: Multiply the fractions: \(\frac{47^{8}}{15625\times 10^{5}}\) The profits in 8 years will be approximately $15,239.22. Rounding this to the nearest dollar, the profits in 8 years will be $15,239.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To represent the yearly profits of the company that are decreasing by \(6\%\) per year, you can use the exponential decay function: \[ P(t) = 25000 \times (1 - 0.06)^t \] This simplifies to: \[ P(t) = 25000 \times (0.94)^t \] where \( P(t) \) is the profit in year \( t \). Now, to find the profits in 8 years, plug in \( t = 8 \): \[ P(8) = 25000 \times (0.94)^8 \approx 25000 \times 0.5935 \approx 14838.75 \] Rounding to the nearest dollar, the profits in 8 years will be approximately \( \$14,839 \). Additionally, it might be fun to know that exponential decay is not just for profits! This concept is also applicable in real life when looking at things like radioactive decay, where unstable isotopes lose mass at a predictable rate over time. The same principle applies, and surprising patterns can emerge from seemingly unrelated numbers! If you’re curious about how other exponential functions work, check out the famous "rule of 72." It is a quick way to estimate how long it will take for an investment to double based on a fixed annual rate of return. Simply divide 72 by the interest rate! For example, at a \(6\%\) return, it will take about \(12\) years to double your money! Fun, right?

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad