Pregunta
upstudy study bank question image url

i) \( \frac{2}{x^{2}(x-1)} \)

Ask by Mejia Olson. in Sierra Leone
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The partial fraction decomposition of \( \frac{2}{x^{2}(x-1)} \) is: \[ \frac{2}{x^{2}(x-1)} = -\frac{2}{x} - \frac{2}{x^{2}} + \frac{2}{x - 1} \]

Solución

We wish to express   2/(x²(x – 1)) in partial fractions. Since the denominator factors as x²(x – 1), we assume a decomposition of the form   2/(x²(x – 1)) = A/x + B/x² + C/(x – 1). Step 1. Multiply both sides by x²(x – 1) to eliminate denominators:   2 = A·[x·(x – 1)] + B·(x – 1) + C·x². Step 2. Expand the right-hand side:   A·[x² – x] = A·x² – A·x,   B·(x – 1) = B·x – B,   and we already have C·x². Thus, combine like terms:   2 = (A + C)x² + (B – A)x – B. Step 3. Equate coefficients from both sides. On the left-hand side, there is no x² term or x term; it’s just the constant 2. Therefore, we have   Coefficient of x²: A + C = 0   (1)   Coefficient of x: B – A = 0    (2)   Constant term: –B = 2       (3) Step 4. Solve the system: From (3): –B = 2 ⟹ B = –2. From (2): B – A = 0 ⟹ –2 – A = 0 ⟹ A = –2. From (1): A + C = 0 ⟹ –2 + C = 0 ⟹ C = 2. Step 5. Write the final answer:   2/(x²(x – 1)) = (–2)/x + (–2)/x² + (2)/(x – 1) or more neatly,   2/(x²(x – 1)) = –2/x – 2/x² + 2/(x – 1). Thus, the partial fractions decomposition is complete.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To transform the expression \( \frac{2}{x^{2}(x-1)} \) into a more manageable form, one might consider performing partial fraction decomposition. This technique involves expressing the function as the sum of simpler fractions, such as \( \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x-1} \). It's a powerful tool for integrating rational functions and can simplify complex algebraic manipulations. When working with fractions like this one, a common mistake is forgetting to include all possible factors in the denominator when settling on constants for A, B, and C. Always check that your final expression combines correctly to resemble the initial fraction before concluding – ensuring accuracy is key in algebraic manipulations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad