Pregunta
upstudy study bank question image url

Answer the following questions about the equation below. \( x^{3}-17 x-4=0 \) (a) List all rational roots that are possible according to the Rational Zero Theorem. Choose the correct answer below. A. \( \pm 1 \) B. \( \pm 4 \) C. \( -1,-2,-4 \) D. \( \pm 1, \pm 2, \pm 4 \) (b) Use synthetic division to test several possible rational roots in order to identify one actual root. One rational root of the given equation is (Simplify your answer.)

Ask by Haynes Reyes. in the United States
Dec 08,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The possible rational roots are D. \( \pm 1, \pm 2, \pm 4 \). (b) One rational root of the equation is -4.

Solución

To solve the equation \( x^{3}-17 x-4=0 \) using the Rational Root Theorem, we first identify the possible rational roots. ### (a) List all rational roots that are possible according to the Rational Zero Theorem. The Rational Root Theorem states that any rational solution, in the form of \( \frac{p}{q} \), must have \( p \) as a factor of the constant term (which is -4) and \( q \) as a factor of the leading coefficient (which is 1). The factors of -4 (the constant term) are: - \( \pm 1 \) - \( \pm 2 \) - \( \pm 4 \) The factors of 1 (the leading coefficient) are: - \( \pm 1 \) Thus, the possible rational roots are: \[ \pm 1, \pm 2, \pm 4 \] So the correct answer is: **D. \( \pm 1, \pm 2, \pm 4 \)** ### (b) Use synthetic division to test several possible rational roots in order to identify one actual root. Let's test the possible rational roots using synthetic division. We will start with \( x = 1 \): **Testing \( x = 1 \):** \[ \begin{array}{r|rrrr} 1 & 1 & 0 & -17 & -4 \\ & & 1 & 1 & -16 \\ \hline & 1 & 1 & -16 & -20 \\ \end{array} \] The remainder is -20, so \( x = 1 \) is not a root. **Testing \( x = -1 \):** \[ \begin{array}{r|rrrr} -1 & 1 & 0 & -17 & -4 \\ & & -1 & 1 & 16 \\ \hline & 1 & -1 & -16 & 12 \\ \end{array} \] The remainder is 12, so \( x = -1 \) is not a root. **Testing \( x = 2 \):** \[ \begin{array}{r|rrrr} 2 & 1 & 0 & -17 & -4 \\ & & 2 & 4 & -26 \\ \hline & 1 & 2 & -13 & -30 \\ \end{array} \] The remainder is -30, so \( x = 2 \) is not a root. **Testing \( x = -2 \):** \[ \begin{array}{r|rrrr} -2 & 1 & 0 & -17 & -4 \\ & & -2 & 4 & 26 \\ \hline & 1 & -2 & -13 & 22 \\ \end{array} \] The remainder is 22, so \( x = -2 \) is not a root. **Testing \( x = 4 \):** \[ \begin{array}{r|rrrr} 4 & 1 & 0 & -17 & -4 \\ & & 4 & 16 & -4 \\ \hline & 1 & 4 & -1 & -8 \\ \end{array} \] The remainder is -8, so \( x = 4 \) is not a root. **Testing \( x = -4 \):** \[ \begin{array}{r|rrrr} -4 & 1 & 0 & -17 & -4 \\ & & -4 & 16 & 4 \\ \hline & 1 & -4 & -1 & 0 \\ \end{array} \] The remainder is 0, so \( x = -4 \) is a root. Thus, one rational root of the given equation is: \[ \boxed{-4} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find all possible rational roots using the Rational Root Theorem, we look at the factors of the constant term (-4) and the leading coefficient (1). The factors of -4 are: \( \pm 1, \pm 2, \pm 4 \). So, the correct answer is D. \( \pm 1, \pm 2, \pm 4 \). Now, let’s apply synthetic division to test some of these possible roots. Testing \( x = 2 \): \[ \begin{array}{r|rrr} 2 & 1 & 0 & -17 & -4 \\ & & 2 & 4 & -26 \\ \hline & 1 & 2 & -13 & -30 \\ \end{array} \] Since the remainder is not zero, 2 is not a root. Testing \( x = 1 \): \[ \begin{array}{r|rrr} 1 & 1 & 0 & -17 & -4 \\ & & 1 & 1 & -16 \\ \hline & 1 & 1 & -16 & -20 \\ \end{array} \] Again, the remainder is not zero. Testing \( x = -1 \): \[ \begin{array}{r|rrr} -1 & 1 & 0 & -17 & -4 \\ & & -1 & 1 & 16 \\ \hline & 1 & -1 & -16 & 12 \\ \end{array} \] Still not a root. Now testing \( x = -4 \): \[ \begin{array}{r|rrr} -4 & 1 & 0 & -17 & -4 \\ & & -4 & 16 & 4 \\ \hline & 1 & -4 & -1 & 0 \\ \end{array} \] The remainder is zero, thus one rational root of the equation is \( x = -4 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad