Pregunta
upstudy study bank question image url

Incorrect. If a rock sample was found to contain \( 3.14 \times 10^{-7} \mathrm{~mol} \) of argon- 40 , how much potassium \( -40\left(\mathrm{t}_{1 / 2}=1.3 \times 10^{9}\right. \) yr) would also have to be present for the rock to be \( 1.3 \times 10^{9} \) years old? eTextbook and Media Hint

Ask by Ray Simpson. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To determine the original amount of potassium-40 (K-40) in the rock, we use the fact that after one half-life (1.3×10⁹ years), half of the original K-40 decays to form argon-40 (Ar-40). Given that the rock contains 3.14×10⁻⁷ moles of Ar-40, the original amount of K-40 would be twice that, which is 6.28×10⁻⁷ moles.

Solución

We start by noting that potassium‑40 (K‑40) decays to argon‑40 (Ar‑40) with a half‐life of 1.3×10⁹ years. For a rock that is 1.3×10⁹ years old (i.e., one half‑life), half of the original K‑40 will have decayed to form Ar‑40. Let X be the original amount (in moles) of K‑40 present. After one half‑life, half of that amount remains as K‑40 and the other half has decayed to Ar‑40. That means the amount of Ar‑40 produced is X/2. We’re told that the rock contains 3.14×10⁻⁷ mol of Ar‑40. Therefore, we have:   X/2 = 3.14×10⁻⁷ mol Solve for X:   X = 2 × (3.14×10⁻⁷ mol) = 6.28×10⁻⁷ mol Thus, for the rock to be 1.3×10⁹ years old, it would have had to originally contain 6.28×10⁻⁷ moles of K‑40.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The relationship between potassium-40 and argon-40 is essential for dating rocks. For every 1 mole of potassium-40 that decays, it produces 1 mole of argon-40. Since the half-life of potassium-40 is 1.3 billion years, the amount of potassium-40 present when the rock was formed can be calculated using the formula for half-life. Considering that your rock is 1.3 billion years old and currently has \( 3.14 \times 10^{-7} \) mol of argon-40, you would actually need 2 times that amount of potassium-40 at the beginning, which equals \( 6.28 \times 10^{-7} \) mol. To solve this problem effectively, it can be beneficial to understand that the amount of the original potassium-40 can be determined by noting that the ratio of the remaining substance to the substance produced is linked through the equation of exponential decay. A common mistake here is failing to double the amount of the current argon-40 because the decay means some potassium-40 has transformed into argon-40! So, always remember - for each mole of argon produced, an equal amount of potassium has decayed. Happy calculating!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad