Pregunta
upstudy study bank question image url

(1) \( x^{2}+3 x-18 \) (J) \( x^{2}-17 x-18 \) (K) \( x^{2}+5 x-24 \) (L) \( x^{2}-10 x-24 \) (M) \( x^{2}+2 x y-15 y^{2} \) (N) \( x^{2}-5 x y-50 y^{2} \) (O) \( x^{2}-9 x y-36 y^{2} \) (P) \( x^{2}+5 x y-36 y^{2} \)

Ask by Wheeler Peterson. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the factored forms of the given expressions: (1) \( x^{2} + 3x - 18 = (x + 6)(x - 3) \) (J) \( x^{2} - 17x - 18 = (x - 18)(x + 1) \) (K) \( x^{2} + 5x - 24 = (x + 8)(x - 3) \) (L) \( x^{2} - 10x - 24 = (x - 12)(x + 2) \) (M) \( x^{2} + 2xy - 15y^{2} = (x + 5y)(x - 3y) \) (N) \( x^{2} - 5xy - 50y^{2} = (x + 5y)(x - 10y) \) (O) \( x^{2} - 9xy - 36y^{2} = (x + 3y)(x - 12y) \) (P) \( x^{2} + 5xy - 36y^{2} = (x + 9y)(x - 4y) \)

Solución

Here’s one way to factor each expression: (1) Factor x² + 3x – 18   We need two numbers that multiply to –18 and add to 3. Since 6 × (–3) = –18 and 6 + (–3) = 3, we have:   x² + 3x – 18 = (x + 6)(x – 3). (J) Factor x² – 17x – 18   Look for two numbers that multiply to –18 and add to –17. The numbers –18 and 1 work because (–18) × 1 = –18 and (–18) + 1 = –17, so:   x² – 17x – 18 = (x – 18)(x + 1). (K) Factor x² + 5x – 24   Find two numbers multiplying to –24 and summing to 5. The pair 8 and –3 works (8 × –3 = –24 and 8 + (–3) = 5):   x² + 5x – 24 = (x + 8)(x – 3). (L) Factor x² – 10x – 24   We need numbers that multiply to –24 and add to –10. The numbers –12 and 2 satisfy this (–12 × 2 = –24 and –12 + 2 = –10):   x² – 10x – 24 = (x – 12)(x + 2). (M) Factor x² + 2xy – 15y²   Treat this as a quadratic in x with y as a constant. We want numbers a and b such that:    a + b = 2 and a·b = –15.   Since 5 + (–3) = 2 and 5 × (–3) = –15, we have:   x² + 2xy – 15y² = (x + 5y)(x – 3y). (N) Factor x² – 5xy – 50y²   Here, find two numbers that satisfy:    Sum = –5 and Product = –50.   The numbers 5 and –10 work because 5 + (–10) = –5 and 5 × (–10) = –50:   x² – 5xy – 50y² = (x + 5y)(x – 10y). (O) Factor x² – 9xy – 36y²   Find two numbers that add to –9 and multiply to –36. The numbers 3 and –12 work (3 + (–12) = –9 and 3 × (–12) = –36):   x² – 9xy – 36y² = (x + 3y)(x – 12y). (P) Factor x² + 5xy – 36y²   We need numbers that add to 5 and multiply to –36. The numbers 9 and –4 meet these conditions (9 + (–4) = 5 and 9 × (–4) = –36):   x² + 5xy – 36y² = (x + 9y)(x – 4y). Each answer gives a correct factorization of the corresponding quadratic expression.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that quadratic equations have roots that can often be found using the famous quadratic formula? This handy tool, \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), helps us solve any quadratic equation in the form \( ax^2 + bx + c = 0 \). It's like the magic key to unlocking the solutions of these polynomial puzzles! When tackling quadratic expressions like these, one common mistake is forgetting to factor correctly or misapplying the signs when distributing terms. Double-check that you're combining like terms and using the correct operations. A little extra attention can spare you from the headache of solving an incorrect equation later on!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad