Pregunta
\[ f(x) = 3x + 4 \quad g(x) = 2x - 3 \] \[ \text{Find: } f \circ g(x) \]
Ask by Parry Cox. in Nigeria
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( f \circ g(x) = 6x - 5 \)
Solución
To find f ∘ g(x), substitute g(x) into f(x):
1. Write g(x): 2x - 3.
2. Substitute g(x) into f(x):
f(g(x)) = f(2x - 3) = 3(2x - 3) + 4
3. Distribute and simplify:
= 6x - 9 + 4
= 6x - 5
Thus, f ∘ g(x) = 6x - 5.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To find \( f \circ g(x) \), you need to substitute \( g(x) \) into \( f(x) \). 1. Start by determining \( g(x) \): \[ g(x) = 2x - 3 \] 2. Now substitute \( g(x) \) into \( f(x) \): \[ f \circ g(x) = f(g(x)) = f(2x - 3) \] 3. Next, replace \( x \) in \( f(x) = 3x + 4 \) with \( 2x - 3 \): \[ f(2x - 3) = 3(2x - 3) + 4 \] 4. Distribute the 3: \[ = 6x - 9 + 4 \] 5. Combine the constants: \[ = 6x - 5 \] So, \( f \circ g(x) = 6x - 5 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium