Pregunta
Help Spock solve and simplify \[ x^{2}=180 \]
Ask by Barnett Barnett. in the United States
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solutions are \( x = -6\sqrt{5} \) and \( x = 6\sqrt{5} \).
Solución
Solve the equation \( x^{2}=180 \).
Solve the quadratic equation by following steps:
- step0: Solve using square roots:
\(x^{2}=180\)
- step1: Simplify the expression:
\(x=\pm \sqrt{180}\)
- step2: Simplify the expression:
\(x=\pm 6\sqrt{5}\)
- step3: Separate into possible cases:
\(\begin{align}&x=6\sqrt{5}\\&x=-6\sqrt{5}\end{align}\)
- step4: Rewrite:
\(x_{1}=-6\sqrt{5},x_{2}=6\sqrt{5}\)
The solutions to the equation \(x^{2}=180\) are \(x=-6\sqrt{5}\) and \(x=6\sqrt{5}\).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To solve for \( x \), start by taking the square root of both sides. This gives us: \[ x = \sqrt{180} \] Now, we can simplify \( \sqrt{180} \). Notice that \( 180 = 36 \times 5 \), and since 36 is a perfect square, we have: \[ x = \sqrt{36 \times 5} = \sqrt{36} \times \sqrt{5} = 6\sqrt{5} \] So, the simplified solution is: \[ x = 6\sqrt{5} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium