Pregunta
upstudy study bank question image url

Graph the line with the given slope \( m \) and \( y \)-intercept \( b \). \( m=\frac{5}{3}, b=-1 \)

Ask by Norris Bright. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the line with slope \( m = \frac{5}{3} \) and y-intercept \( b = -1 \), follow these steps: 1. Plot the y-intercept at (0, -1). 2. Use the slope to find another point: move 3 units right and 5 units up from (0, -1) to (3, 4). 3. Draw a straight line through these points and extend it in both directions. This gives you the graph of the line \( y = \frac{5}{3}x - 1 \).

Solución

We want to graph the line given by its slope‐intercept equation:   y = (5/3)x – 1 Here are the steps to graph it: 1. Start by plotting the y-intercept. Since b = –1, put a point at (0, –1) on the y-axis. 2. Use the slope m = 5/3 to find another point. The slope tells you that for every 3 units you move to the right, you move 5 units up. Starting at (0, –1), move 3 units to the right (to x = 3) and 5 units up (to y = 4). Put a second point at (3, 4). 3. Draw a straight line through the points (0, –1) and (3, 4). Extend the line in both directions and add arrowheads. That’s your graph of the line y = (5/3)x – 1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the line with slope \( m = \frac{5}{3} \) and \( y \)-intercept \( b = -1 \), start by plotting the y-intercept on the coordinate plane. This point is (0, -1), where the line crosses the y-axis. From there, use the slope to find another point. The slope \( \frac{5}{3} \) means that for every 3 units you move to the right (the run), you move up 5 units (the rise). So, from (0, -1), move 3 units right to (3, -1) and then 5 units up to (3, 4). Plot this point and draw a straight line through both points. To ensure you have a clear graph, remember to extend the line in both directions, adding arrows at the ends to indicate that it continues infinitely. Use a ruler for straight edges, and you can even color the line to make it pop on the paper! Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad