QUESTION 1 1.1 Solve for \( \boldsymbol{x} \) : 1.1.1 \( \quad 5 x^{2}-\mathbf{4 x}=0 \) 1.1.2 \( \quad 3 x^{2}=2(x+2) \) (Leave your answer correct to TWO decimal places) 1.1.3 \( 4+5 x>6 x^{2} \) 1.1.4 \( \quad \mathbf{5}^{-x} \cdot \mathbf{5}^{x-2}=\frac{25^{2 x}}{5} \) 1.2 If \( \mathbf{2} \) and \( \mathbf{- 4} \) are the roots of the equation \( x^{2}+b x+c=\mathbf{0} \) Determine the values of \( \boldsymbol{b} \) and \( \boldsymbol{c} \). 1.3 Solve simultaneously for x and y : \[ \begin{array}{l} x-3 y=1 \\ x^{2}-2 x y+9 y^{2}=17 \end{array} \] 1.4 For which values of \( \boldsymbol{p} \) will the equation \( \boldsymbol{x}^{2}+\boldsymbol{x}=\boldsymbol{p} \) have no real roots?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve \( 5x^2 - 4x = 0 \), factor out \( x \) to get \( x(5x - 4) = 0 \). This gives solutions \( x = 0 \) and \( x = \frac{4}{5} \). For \( 3x^2 = 2(x + 2) \), rearranging gives \( 3x^2 - 2x - 4 = 0 \), which you can solve using the quadratic formula to find \( x \) as approximately \( 2.18 \) or \( -0.92 \). Next, for the inequality \( 4 + 5x > 6x^2 \), rearrange it to \( 6x^2 - 5x - 4 < 0 \). Using the quadratic formula, identify the roots \( x = -\frac{1}{3} \) and \( x = 2 \), enabling you to determine the intervals on which the expression is negative. On solving the equation \( 5^{-x} \cdot 5^{x-2} = \frac{25^{2x}}{5} \), simplify it to \( 5^{-x + x - 2} = 5^{4x - 1} \), leading to the equation \( -2 = 4x - 1 \), thus \( x = -\frac{1}{4} \). Now for the polynomial roots \( 2 \) and \( -4 \), you can classify \( b \) as \( 2 + (-4) = -2 \) (sum of roots) and \( c \) as \( 2 \cdot (-4) = -8 \) (product of roots). Next, for the simultaneous equations \( x - 3y = 1 \) and \( x^2 - 2xy + 9y^2 = 17 \), substitute \( x = 3y + 1 \) into the second equation. This results in a quadratic in \( y \), which can be solved to find possible values for \( y \), and subsequently, the corresponding \( x \) values. Finally, for the equation \( x^2 + x = p \) to have no real roots, its discriminant must be less than zero. The discriminant \( \Delta = 1 - 4p < 0 \); hence, \( p > \frac{1}{4} \) ensures the absence of real solutions.
