Pregunta
upstudy study bank question image url

Find the remaining five trigonometric functions of satisfying the conditions. (Hint: Draw a triangle
in the appropriate quadrant. Pay attention to signs!
14.

Ask by Chen Rodriquez. in the United States
Mar 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The remaining five trigonometric functions of are:

Solución

To find the remaining five trigonometric functions of given that and , we can follow these steps:
  1. Identify the quadrant: Since is positive and is negative, must be in the fourth quadrant (where cosine is positive and sine is negative).
  2. Find cosine: The secant function is the reciprocal of the cosine function:
  3. Use the Pythagorean identity: We can find sine using the identity:
    Substituting for :
    (We take the negative root because sine is negative in the fourth quadrant.)
  4. Find tangent: The tangent function is given by:
  5. Find cosecant: The cosecant function is the reciprocal of sine:
  6. Find cotangent: The cotangent function is the reciprocal of tangent:
Now we have all six trigonometric functions:
Thus, the remaining five trigonometric functions of are:
  • (given)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the remaining five trigonometric functions, we start by using the information given. Since , we can find as its reciprocal: . Since implies that is in either the second or fourth quadrant, we determine it’s in the second quadrant because is positive and is negative in this quadrant.
Next, we can find the sine of using the Pythagorean identity . Solving gives . Thus, , but since we are in the second quadrant, is positive, so .
Now, using these values, we can find the other trigonometric functions:
  1. (which is negative in the second quadrant, so )
  2. (already given)
To summarize:

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad