\( f ( x ) = \tan ^ { 2 } ( x ) , f ^ { i i i } ( x ) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the third derivative, \( f^{(iii)}(x) \), of the function \( f(x) = \tan^2(x) \), we first generate the first derivative: \( f'(x) = 2\tan(x)\sec^2(x) \). The second derivative is a bit trickier as it combines product and chain rule, leading to \( f''(x) = 2\sec^2(x)\sec^2(x) + 4\tan^2(x)\sec^2(x)\tan(x) \). After obtaining \( f''(x) \), we apply the quotient and product rules once more to derive \( f^{(iii)}(x) \) from \( f''(x) \). The process builds upon the chain rule and product rule, making it crucial to stay organized while deriving each step. Once you get through all calculations, you will have your third derivative as a more complex expression involving secant and tangent functions! Keep an eye out for common simplification mistakes. It’s easy to lose track of your secant and tangent functions in all the excitement!
preguntas relacionadas
