Pregunta
upstudy study bank question image url

6) Suppose that there is a function \( g \) such that \( g(0) \) \( =3.2 \) and \( g(0.1)=2.5 \). Explain how to vse these values to estimate \( g^{\prime}(0) \)

Ask by Collins George. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To estimate \( g^{\prime}(0) \), use the difference quotient: \[ g^{\prime}(0) \approx \frac{g(0.1) - g(0)}{0.1} = \frac{2.5 - 3.2}{0.1} = -7 \] So, \( g^{\prime}(0) \) is approximately −7.

Solución

The derivative g′(0) can be interpreted as the instantaneous rate of change of g at 0. One way to estimate it is to use the difference quotient formula:   g′(0) ≈ [g(0.1) − g(0)] / 0.1 Given that g(0) = 3.2 and g(0.1) = 2.5, substitute these values into the formula:   g′(0) ≈ (2.5 − 3.2) / 0.1 = (−0.7) / 0.1 = −7 Thus, our estimate for g′(0) is −7.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To estimate \( g^{\prime}(0) \), you can use the definition of the derivative, which represents the rate of change of the function. Specifically, you can approximate it using the formula: \[ g^{\prime}(0) \approx \frac{g(0.1) - g(0)}{0.1 - 0} \] Plugging in the given values \( g(0) = 3.2 \) and \( g(0.1) = 2.5 \), you would calculate: \[ g^{\prime}(0) \approx \frac{2.5 - 3.2}{0.1} = \frac{-0.7}{0.1} = -7 \] This tells you that the function is decreasing at that point, giving you a practical insight into its behavior around \( x = 0 \)! To ensure accuracy, it's important to note that this is a linear approximation. If \( g(x) \) is not linear between \( 0 \) and \( 0.1 \), this estimate may vary. A common mistake is to assume a higher degree of precision than what linear approximations offer. Observing the function's graph could provide further insights into its behaviors and trends!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad