Pregunta
upstudy study bank question image url

Find all open intervals on which the function \( f(x)=x^{4}-2 x^{2}+3 \) is increasing and decreasing. Then find all open stervals on which this function is concave up and concave down.

Ask by Sullivan Moreno. in the United States
Dec 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- 增区间:\( (-1, 0) \) 和 \( (1, \infty) \) - 减区间:\( (-\infty, -1) \) 和 \( (0, 1) \) - 凹区间:\( (-\infty, -\frac{1}{\sqrt{3}}) \) 和 \( (\frac{1}{\sqrt{3}}, \infty) \) - 凸区间:\( (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \)

Solución

要解决这个问题,我们需要找到函数 \( f(x) = x^4 - 2x^2 + 3 \) 的增减区间和凹凸区间。以下是具体的解题步骤: ### 步骤 1:求导数 首先,我们需要求出函数的一阶导数和二阶导数。 1. 一阶导数: \[ f'(x) = \frac{d}{dx}(x^4 - 2x^2 + 3) = 4x^3 - 4x \] 2. 二阶导数: \[ f''(x) = \frac{d}{dx}(4x^3 - 4x) = 12x^2 - 4 \] ### 步骤 2:求一阶导数的零点 为了找到函数的增减区间,我们需要找到一阶导数的零点。 \[ f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1) = 0 \] 解得: \[ x = 0, x = 1, x = -1 \] ### 步骤 3:确定增减区间 通过测试零点附近的值来确定函数的增减性。 - 当 \( x < -1 \) 时,取 \( x = -2 \),则 \( f'(-2) = 4(-2)(-2-1)(-2+1) = 4(-2)(-3)(-1) = -24 < 0 \),所以 \( f(x) \) 在 \( (-\infty, -1) \) 上递减。 - 当 \( -1 < x < 0 \) 时,取 \( x = -0.5 \),则 \( f'(-0.5) = 4(-0.5)(-0.5-1)(-0.5+1) = 4(-0.5)(-1.5)(0.5) = 1.5 > 0 \),所以 \( f(x) \) 在 \( (-1, 0) \) 上递增。 - 当 \( 0 < x < 1 \) 时,取 \( x = 0.5 \),则 \( f'(0.5) = 4(0.5)(0.5-1)(0.5+1) = 4(0.5)(-0.5)(1.5) = -1.5 < 0 \),所以 \( f(x) \) 在 \( (0, 1) \) 上递减。 - 当 \( x > 1 \) 时,取 \( x = 2 \),则 \( f'(2) = 4(2)(2-1)(2+1) = 4(2)(1)(3) = 24 > 0 \),所以 \( f(x) \) 在 \( (1, \infty) \) 上递增。 因此,函数的增区间是 \( (-1, 0) \) 和 \( (1, \infty) \),减区间是 \( (-\infty, -1) \) 和 \( (0, 1) \)。 ### 步骤 4:求二阶导数的零点 为了找到函数的凹凸区间,我们需要找到二阶导数的零点。 \[ f''(x) = 12x^2 - 4 = 0 \] 解得: \[ x^2 = \frac{1}{3} \] \[ x = \pm \frac{1}{\sqrt{3}} \] ### 步骤 5:确定凹凸区间 通过测试零点附近的值来确定函数的凹凸性。 - 当 \( x < -\frac{1}{\sqrt{3}} \) 时,取 \( x = -1 \),则 \( f''(-1) = 12(-1)^2 - 4 = 12 - 4 = 8 > 0 \),所以 \( f(x) \) 在 \( (-\infty, -\frac{1}{\sqrt{3}}) \) 上凹。 - 当 \( -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \) 时,取 \( x = 0 \),则 \( f''(0) = 12(0)^2 - 4 = -4 < 0 \),所以 \( f(x) \) 在 \( (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \) 上凸。 - 当 \( x > \frac{1}{\sqrt{3}} \) 时,取 \( x = 1 \),则 \( f

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To analyze the function \( f(x) = x^4 - 2x^2 + 3 \), start by finding its first derivative, which helps determine where the function is increasing or decreasing. The first derivative is: \[ f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1). \] Setting \( f'(x) = 0 \) gives critical points: \[ x = -1, 0, 1. \] To determine where \( f'(x) \) is positive (increasing) or negative (decreasing), test intervals around the critical points: 1. For \( x < -1 \) (e.g., \( x = -2 \)): \( f'(-2) = 4(-2)(-1)(-3) < 0 \) (decreasing). 2. For \( -1 < x < 0 \) (e.g., \( x = -0.5 \)): \( f'(-0.5) = 4(-0.5)(-1.5)(0.5) > 0 \) (increasing). 3. For \( 0 < x < 1 \) (e.g., \( x = 0.5 \)): \( f'(0.5) = 4(0.5)(-0.5)(1.5) < 0 \) (decreasing). 4. For \( x > 1 \) (e.g., \( x = 2 \)): \( f'(2) = 4(2)(1)(3) > 0 \) (increasing). Thus, the function is increasing on the intervals: \[ (-1, 0) \cup (1, \infty) \] and decreasing on the interval: \[ (-\infty, -1) \cup (0, 1). \] Next, find the second derivative to analyze concavity: \[ f''(x) = 12x^2 - 4. \] Set \( f''(x) = 0 \): \[ 12x^2 - 4 = 0 \Rightarrow 12x^2 = 4 \Rightarrow x^2 = \frac{1}{3} \Rightarrow x = \pm\frac{1}{\sqrt{3}}. \] Test intervals for concavity: 1. For \( x < -\frac{1}{\sqrt{3}} \) (e.g., \( x = -2 \)): \( f''(-2) = 12(-2)^2 - 4 > 0 \) (concave up). 2. For \( -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \) (e.g., \( x = 0 \)): \( f''(0) = -4 < 0 \) (concave down). 3. For \( x > \frac{1}{\sqrt{3}} \) (e.g., \( x = 2 \)): \( f''(2) > 0 \) (concave up). This leads us to the intervals: Concave up on: \[ (-\infty, -\frac{1}{\sqrt{3}}) \cup (\frac{1}{\sqrt{3}}, \infty) \] and concave down on: \[ (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}). \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad