Pregunta
upstudy study bank question image url

15. INVESTMENTS Determine the amount of an investment if \( \$ 1000 \) is invested at an interest rate of \( 8 \% \) compounded quarterly for 2 years.

Ask by Chan Parsons. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The investment grows to approximately \$1,171.66 after 2 years.

Solución

To determine the amount of an investment, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] where: - \( A \) is the amount of the investment after \( t \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (in decimal form), - \( n \) is the number of times the interest is compounded per year, - \( t \) is the time the money is invested for in years. Given: - Principal amount (\( P \)) = $1000 - Annual interest rate (\( r \)) = 8% = 0.08 - Compounded quarterly, so \( n = 4 \) - Time (\( t \)) = 2 years Substitute the given values into the formula: \[ A = 1000 \left( 1 + \frac{0.08}{4} \right)^{4 \times 2} \] Now, we can calculate the amount of the investment. Calculate the value by following steps: - step0: Calculate: \(1000\left(1+\frac{0.08}{4}\right)^{4\times 2}\) - step1: Divide the terms: \(1000\left(1+\frac{1}{50}\right)^{4\times 2}\) - step2: Add the numbers: \(1000\left(\frac{51}{50}\right)^{4\times 2}\) - step3: Multiply the numbers: \(1000\left(\frac{51}{50}\right)^{8}\) - step4: Simplify: \(1000\times \frac{51^{8}}{50^{8}}\) - step5: Rewrite the expression: \(50\times 20\times \frac{51^{8}}{50^{8}}\) - step6: Reduce the numbers: \(20\times \frac{51^{8}}{50^{7}}\) - step7: Rewrite the expression: \(10\times 2\times \frac{51^{8}}{50^{7}}\) - step8: Rewrite the expression: \(10\times 2\times \frac{51^{8}}{10^{7}\times 5^{7}}\) - step9: Reduce the numbers: \(2\times \frac{51^{8}}{10^{6}\times 5^{7}}\) - step10: Rewrite the expression: \(2\times \frac{51^{8}}{2^{6}\times 5^{6}\times 5^{7}}\) - step11: Reduce the numbers: \(1\times \frac{51^{8}}{2^{5}\times 5^{6}\times 5^{7}}\) - step12: Multiply the fractions: \(\frac{51^{8}}{500000\times 5^{7}}\) The amount of the investment after 2 years with an interest rate of 8% compounded quarterly is approximately $1171.66.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the amount of the investment after 2 years with quarterly compounding, you can use the formula \( A = P \left(1 + \frac{r}{n}\right)^{nt} \), where \( A \) is the amount, \( P \) is the principal amount (initial investment), \( r \) is the annual interest rate (in decimal), \( n \) is the number of times interest is compounded per year, and \( t \) is the number of years. Substituting the values, we have \( A = 1000 \left(1 + \frac{0.08}{4}\right)^{4 \times 2} = 1000 \left(1 + 0.02\right)^{8} \). Evaluating this gives \( A = 1000 \left(1.02\right)^{8} \approx 1000 \times 1.171659 \), which is about \( \$ 1171.66 \). After two years of investing your money, you won’t just have your initial amount back but a shiny little extra too! Compounding quarterly means your investment gets a boost four times a year instead of just once. So every time you think of your money, just remember—it’s busy making money while you relax! Investing wisely, even from a small amount, can yield amazing returns over time!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad