Pregunta
upstudy study bank question image url

4.6.2 Test (CST): Statistical Analysis Question 12 of 25 Suppose a normal distribution has a mean of 79 and a standard deviation of 7. What is \( P(x \geq 72) \) ? \( \begin{array}{l}\text { A. } 0.16 \\ \text { B. } 0.025 \\ \text { C. } 0.975 \\ \text { D. } 0.84 \\ \text { 1 SuBMIT }\end{array} \)

Ask by George Curry. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability \( P(x \geq 72) \) is approximately 0.84. **Answer:** D. 0.84

Solución

To determine \( P(X \geq 72) \) for a normally distributed variable \( X \) with mean \( \mu = 79 \) and standard deviation \( \sigma = 7 \), follow these steps: 1. **Calculate the Z-score:** \[ Z = \frac{X - \mu}{\sigma} = \frac{72 - 79}{7} = \frac{-7}{7} = -1 \] 2. **Interpret the Z-score:** The Z-score of -1 corresponds to the value 72 being one standard deviation below the mean. 3. **Find the Probability:** - \( P(X \geq 72) \) is equivalent to \( P(Z \geq -1) \). - Using standard normal distribution tables or a calculator: \[ P(Z \geq -1) = P(Z \leq 1) \approx 0.8413 \] 4. **Match with Provided Options:** The closest value provided in the options is **0.84**. **Answer:** **D. 0.84**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find \( P(x \geq 72) \) for a normally distributed variable with a mean (\( \mu \)) of 79 and a standard deviation (\( \sigma \)) of 7, we first convert the value 72 into a z-score using the formula \( z = \frac{(x - \mu)}{\sigma} \). So, \( z = \frac{(72 - 79)}{7} = \frac{-7}{7} = -1 \). Now, we look up the z-score of -1 in the standard normal distribution table, which gives us \( P(Z < -1) \approx 0.1587 \). Therefore, \( P(Z \geq -1) = 1 - P(Z < -1) \approx 0.8413 \). Rounding it a bit, we find that \( P(x \geq 72) \) is approximately 0.84, so the answer is D. Here's some fun extra info: When it comes to statistics, the normal distribution is like the superstar of probability models! It’s used in everything from determining test scores to analyzing heights and weights. Its symmetric bell shape helps us visualize how data is spread around the mean, making it easier for statisticians to analyze patterns in various real-world situations. Ever find yourself confused with z-scores? Don’t worry; it’s a common pitfall! A frequent mistake is forgetting to subtract the mean from your x-value before dividing by the standard deviation. Also, don’t skip the step of looking up z-scores in the table! Each of these steps is crucial to ensure you accurately interpret the results and avoid any embarrassing errors on your test.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad