Pregunta
upstudy study bank question image url

12. Writing to Explain Explain how you know that \( \frac{7}{12} \) is greater than \( \frac{1}{3} \) but less than \( \frac{2}{3} \) ?

Ask by Rodriquez Wang. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \frac{7}{12} \) is greater than \( \frac{1}{3} \) and less than \( \frac{2}{3} \) because when converted to the same denominator or expressed as decimals, \( \frac{7}{12} \) falls between \( \frac{1}{3} \) and \( \frac{2}{3} \).

Solución

To determine why \( \frac{7}{12} \) is greater than \( \frac{1}{3} \) but less than \( \frac{2}{3} \), we can compare these fractions by converting them to a common denominator or by converting them to decimal form. Here's a step-by-step explanation using both methods: ### Method 1: Common Denominator 1. **Find a Common Denominator** - The denominators of the fractions are 3 and 12. The least common denominator (LCD) for these is 12. 2. **Convert Each Fraction to the Common Denominator** - \( \frac{1}{3} = \frac{1 \times 4}{3 \times 4} = \frac{4}{12} \) - \( \frac{2}{3} = \frac{2 \times 4}{3 \times 4} = \frac{8}{12} \) - \( \frac{7}{12} \) already has the denominator 12. 3. **Compare the Numerators** - \( \frac{4}{12} < \frac{7}{12} < \frac{8}{12} \) - This shows that \( \frac{7}{12} \) is greater than \( \frac{1}{3} \) (\( \frac{4}{12} \)) and less than \( \frac{2}{3} \) (\( \frac{8}{12} \)). ### Method 2: Decimal Conversion 1. **Convert Each Fraction to a Decimal** - \( \frac{1}{3} \approx 0.333 \) - \( \frac{7}{12} \approx 0.583 \) (since \( 7 \div 12 = 0.583 \)) - \( \frac{2}{3} \approx 0.666 \) 2. **Compare the Decimals** - \( 0.333 < 0.583 < 0.666 \) - This confirms that \( \frac{7}{12} \) is between \( \frac{1}{3} \) and \( \frac{2}{3} \). ### Visual Representation: Number Line Imagine a number line where: - \( \frac{0}{12} = 0 \) - \( \frac{4}{12} = \frac{1}{3} \) - \( \frac{7}{12} \) is somewhere between \( \frac{4}{12} \) and \( \frac{8}{12} \) - \( \frac{8}{12} = \frac{2}{3} \) - \( \frac{12}{12} = 1 \) Placing these on the number line clearly shows that \( \frac{7}{12} \) falls between \( \frac{1}{3} \) and \( \frac{2}{3} \). ### Conclusion By either converting to a common denominator, turning the fractions into decimals, or visualizing them on a number line, it's evident that \( \frac{7}{12} \) is greater than \( \frac{1}{3} \) and less than \( \frac{2}{3} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To compare fractions, we can find a common denominator. The least common multiple of 12 and 3 is 12, so we convert \( \frac{1}{3} \) into twelfths: \( \frac{1}{3} = \frac{4}{12} \). Now we can see \( \frac{7}{12} > \frac{4}{12} \), which means \( \frac{7}{12} \) is indeed greater than \( \frac{1}{3} \). Next, let's compare \( \frac{7}{12} \) with \( \frac{2}{3} \). Again, converting \( \frac{2}{3} \) into twelfths gives us \( \frac{2}{3} = \frac{8}{12} \). Since \( \frac{7}{12} < \frac{8}{12} \), it shows that \( \frac{7}{12} \) is less than \( \frac{2}{3} \). Thus, we see that \( \frac{7}{12} \) falls perfectly between \( \frac{1}{3} \) and \( \frac{2}{3} \)!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad