Pregunta
upstudy study bank question image url

Describe the end behavior of the given function. \( f(x)=\left(\frac{2}{3}\right)^{z}-2 \) A. As \( x \) decreases, \( f(x) \) approaches 2 . B. As \( x \) decreases, \( f(x) \) approaches negative infinity. C. As \( x \) increases, \( f(x) \) approaches -2 . D. As \( x \) increases, \( f(x) \) approaches infinity.

Ask by Sullivan Rodriquez. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

As \( z \) increases, \( f(z) \) approaches -2, and as \( z \) decreases, \( f(z) \) approaches positive infinity. So, the correct options are C and B.

Solución

To analyze the end behavior of the function \( f(z) = \left(\frac{2}{3}\right)^{z} - 2 \), we need to consider the limits of \( f(z) \) as \( z \) approaches positive and negative infinity. 1. **As \( z \) approaches positive infinity (\( z \to +\infty \)):** - The term \( \left(\frac{2}{3}\right)^{z} \) will approach 0 because \( \frac{2}{3} < 1 \). Therefore: \[ f(z) = \left(\frac{2}{3}\right)^{z} - 2 \to 0 - 2 = -2 \] 2. **As \( z \) approaches negative infinity (\( z \to -\infty \)):** - The term \( \left(\frac{2}{3}\right)^{z} \) will approach infinity because raising a fraction less than 1 to a negative exponent results in a large positive number. Therefore: \[ f(z) = \left(\frac{2}{3}\right)^{z} - 2 \to +\infty - 2 = +\infty \] Now, summarizing the end behavior: - As \( z \to +\infty \), \( f(z) \to -2 \). - As \( z \to -\infty \), \( f(z) \to +\infty \). Based on this analysis, the correct options are: - C. As \( z \) increases, \( f(z) \) approaches -2. - B. As \( z \) decreases, \( f(z) \) approaches positive infinity. Thus, the correct answers are C and B.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

As \( z \) approaches negative infinity, \( \left(\frac{2}{3}\right)^{z} \) grows very large because raising a fraction to a negative exponent flips it into a positive exponent. In this case, as \( z \) decreases, \( f(z) \) will approach positive infinity, meaning the correct choice is aligned with infinity's pull rather than any finite number. On the flip side, as \( z \) approaches positive infinity, \( \left(\frac{2}{3}\right)^{z} \) will shrink towards zero. Therefore, \( f(z) \) will approach -2, because the function's structure reveals that all the action is pulling down towards a threshold just below zero, making it clear that our function heads towards this value as \( z \) increases.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad